SMEDGE

Administrator Manual

Smedge 2014 Update 1

© 2004 - 2013 Uberware™ M

Table of Contents

ABOUT IDS 4 PARAMETER COMMANDS 24
SMEDGE ENVIRONMENT VARIABLES 5 COMMON PARAMETERS 28
UNCTIONALITY_ 5 29
34.
37.
RESTRICTIONS 9 fl’
4 ‘‘‘‘‘‘
DEFAULT RESTRICTIONS, 10, SUCEDIsTRmUTOR. 4 3.
AUTOMATIC SYSTEMS 11 DYNAMIC PRODUCTS 44
AUTOMATIC REDUNDANT MASTER 11 MAYA PRODUCTS 45

13,
. 14. VIRTUAL MODULES 47

AUTOMATIC ENGINE SETTINGS 15
AUTOMATIC EXECUTABLE PATHS 16 PARAMETER TYPES 48
CoMMON PARAMETERS 50.
2.
62.
PRODUCT REFERENCE 09
3D Stupio MAXx. 70.
.SJ JOB FILES 21 3D Stubp1io MAX (SINGLE FRAME) 72
3D.STupIo MAX (VIA SFRENDER). 73.
3DELIGHT. 74.
VYARIABLE SUBSTITUTION 22 3DELIGHT FOR MAYA 75
3DELIGHT FOR MAYA (SINGLE FRAME) 17.

SYNTAX 23

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 2

AFTER EFFECTS

MAcHSTUDIOPRO 1.4 . .
MAXWELL LIGHT SIMULATOR 105

SMEDGEMASTER.INI OPTIONS 157.
SMEDGEENGINE REFERENCE 163
FREQUENTLY ASKED QUESTIONS 165
TIPS AND TRICKS 169
LEGAL 171

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 3

About IDs

Smedge uses an ID for nearly everything. These IDs are forms of a Universally Unique Identifier, or UUID. A UUID is a 16-byte
(128-bit) number. The number of theoretically possible UUIDs is about 3 x 10%*, In its canonical form, a UUID consists of 32 hexa-
decimal digits. Smedge does not care if the hexadecimal letters (A-F) are upper or lower case. The digits are displayed in 5 groups
separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters (32 digits and 4 hyphens). For example:

7582c8ad-cafd-4ac2-b5£0-a20101872527

Smedge uses the system run time libraries to generate these IDs. Any ID generated by Smedge is going to be unique to your system.
You can also use other UUID generation tools, like those distributed with development tools or web pages for generating them, with
confidence.

You can use the uidgen tool included in the Smedge distribution to generate IDs from a command prompt or script.

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 4

Smedge Environment Variables

Variables that control Smedge functionality

These variables configure how Smedge itself operates. You must set these variables before starting a Smedge component process in
order to have the value you have set recognized by the process.

SMEDGELIB API Only. The base directory where the Smedge API is installed. For example, C: \dev\Smedge

SMEDGE_BIN Linux only. The actual directory where the Smedge binaries are installed. Normally, the Smedge
start scripts take care of this for you, but if you want to be able to override the installation folder
(for example, if you want to test a new version without affecting the working installation), you can
override the path to the binaries with the value of this variable.

SMEDGE_DAEMON PATH Mac daemon only. Use this variable to override the location where the launchd plist file to control
the daemon has been installed so that it can be properly shut down programmatically. If this vari-
able is not set, the program will assume the plist file is in the default system daemon folder:

/Library/LaunchDaemons.

SMEDGE_FIND_ LOG Allows you to find where the Smedge files are created. Set this variable to a path to a file path, and
every Smedge component that starts on the machine will write the path where the log file is cre-
ated to this file.

SMEDGE MACHINE LOGS Allows you to override the base folder where Smedge will write its own run-time log files. By de-
fault, this is in the local user directory for the user that started the component process. Using the
environment variable will override the default, but using the command line flag -LogFolder will
override the environment variable.

SMEDGE_MODULES This is a semicolon separated list of folders to look for Smedge .SX Modules. The folders will
each be recursively searched by the Module Manager during startup.

SMEDGE_OPTIONS_ PATH This is a semicolon separated list of folders to search when looking for INI files. The folders here
will be searched before any default folders, but after any folders specified with the command line
switches —OptionsFolder folder.

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 5

SMEDGE_UMASK

SMEDGE_UNIQUE ID

SMEDGE_USER

SMEDGE _WAKE COMMAND

Linux daemon only. If you want to set a umask for the files created by Smedge when it is running
as a daemon, you can set the umask value here. Smedge expects this value to be a 3 digit octal
value corresponding to the bits you want umasked. For example: export SMEDGE UMASK=022

This allows you to customize the unique ID value that is used to identify this machine in the sys-
tem. If unset, Smedge will try to generate an ID that is tied to the hardware (derived from the
primary network interface MAC address). If this environment value is set to a valid UID string,
then the given value will be used as the ID of this machine. If the value of this variable points to a
file with a valid 16 byte UID in it, the value loaded from the file will be used. If the value is set
but is neither a valud UID string nor the name of an existing and valid file with the 16 byte UID
data, then a random UID will be generated. In this case, after generating the random ID, Smedge
will try to save the generated ID as 16 byte ID data in the file named by the environment variable.
Note that failure to save the ID will not result in Smedge failing to start. However, restarting the
application will result in a new ID being generated. This can affect the ability for the machine to
decrypt license codes, and may cause Engines to appear multiple times in the Engine list.

Linux daemon only. This is the user account you want the Smedge 3 daemon process to run as.
Warning: if unset, the process will run as the user that started it. If you start it as root, then
Smedge 3 Jobs will have potential root access to every machine on your network. This could be
very dangerous.

This is an optional command you can use to try to wake up engines over the network. By default,
Smedge uses an internal system that tries to broadcast the wake request as a Wake-On-LAN UDP
message. If you want to customize this operation, you can set this environment variable to a com-
mand string that will be used instead of the internal system. It understands the following paramet-
ers:

$(Broadcast:4|B|C|subnet-mask) A broadcast IP address derived from the $(IP) address

No options 255.255.255.255
A XXX.255.255.255
B XXX .XXX.255.255
C XXX . XXX .XXX.255

subnet-mask the broadcast for the specified subnet
if no IP address is known for the Engine, this will always have
the LAN broadcast address of 255.255.255.255.

$(Engine) Equivalent to $(Name)

$(ID) The ID of the Engine

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™ 6

SMEDGE_WAKE _PORT

$(IP) The last known IP address for the Engine, or the host name if
there is no last known IP address.

$(MACAddress:c) The Engine's MAC address. The optional character ¢ can be:
$(MACAddress) 01-23-45-67-89-ab
$(MACAddress:) 0123456789ab
$(MACAddress:-) 01-23-45-67-89-ab
$(MACAddress:.) 01.23.45.67.89.ab

$(Name) The name of the Engine

By default, Smedge sends its own wake broadcast on UDP using port 9. If you want to use a dif-
ferent port, specify the port number with this environment variable. Note that this variable is ig-
nored if you use the SMEDGE_WAKE COMMAND environment variable to override the wake
system.

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™ 7

Variables sets for work processes

SmedgeEngine will set some more environment variables when it starts up. These variables will be valid from the context of any oper-
ation performed by the SmedgeEngine process, or by any child process it starts. This includes any form of work, no matter what Job
classes it may use to implement its functionality.

SMEDGE_ENGINE ID
SMEDGE_ENGINE NAME
SMEDGE_LOG_FOLDER

SMEDGE_PROGRAM_FILES

The ID of the Engine on which the work was started
The name of the Engine on which the work was started.
The Smedge machine logs folder for SmedgeEngine.

The location where the Smedge program files, including the SmedgeEngine executable, reside.

Smedge work that spawns a child process (anything that is derived from ProcessJob, technically) will create several additional envir-
onment variables that the work process can use to access information from the Smedge system without having to pass the data directly
via the command line. See the ProcessJob parameters list for more information. These variables are only set for a child process started

from ProcessJob::Execute. They are not available from the context of the SmedgeEngine process itself, unlike the variables above.

SMEDGE_COMMAND _LINE
SMEDGE_JOB_ID
SMEDGE _JOB_NAME
SMEDGE_WORK_ID
SMEDGE_WORK_NAME

SMEDGE_WORK_PARAMETERS

The command line that was used to start the child process.
The ID of the parent Job

The name of the parent Job.

The ID of the work unit.

The name of the work unit

parameter of the Job.

Products may set other customized variables required for normal operation.

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™ 8

Restrictions

Smedge includes a restriction system that allows administrators to limit the SmedgeGui functionality for end users. For example, you
may want to limit users to only being allowed to modify their own Jobs. The restriction system allows this.

You can configure Restrictions in the Configure Master dialog. For more information on how this window works and how to access it,
see the SmedgeGui reference in the User Manual. Note that restrictions currently only affect SmedgeGui operation. Entering “Admin-

istrator Mode” will override any Restrictions set, and allow complete SmedgeGui functionality.

The following is a list of the currently available restrictions and what they do:

Change Job Users cannot change any parameter of a job once it has been created.
Configure Connection Users cannot change their local user preference for how SmedgeGui to connect to a Master .
Configure Connection.ini Users cannot use SmedgeGui to configure the Connection.ini file for how any Smedge client ap-

plication on the system can connect to the Master.

Core Process Control Users cannot start, stop, install or remove the Master and Engine components from SmedgeGui.
Customize Views Users cannot see or use the Customize Views menu item or GUI View Manager tab.

Delete Job Users cannot delete Jobs from the system.

Edit Engine Users cannot modify any Engine settings, Engine Product Options, or what Pools an Engine be-

longs to. Essentially, the Edit Engine window can no longer be accessed.

Event Commands Users cannot see or modify the “Event Commands” tab of the Submit Job window or the Config-
ure Engine windoow to set processes to be started during the Job life cycle.

Job Advanced Info Users cannot see or modify the “Advanced Info” tab of the Submit Job window to set Advanced
Job parameters.

Job Custom Pool Users cannot see or modify the “Custom Pool” tab of the Submit Job window to customize which
Engines can or cannot work on the Job.

Job Pool Users cannot set or change the Pool to which the Job has been assigned.

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 9

Job Priority

My Jobs Only

Process Control

Reset Failures

Save Default Engine
Save Default Job
Stop Work

Submit Job

VNC

Default Restrictions

Users cannot set or change the priority of any Job.

Users can only control or modify Jobs that they have created. This restriction will also remove the
ability to customize the user name that is set as the Job “Creator”, so that users cannot defeat the
system just by changing the user name in the SmedgeGui options.

Users cannot start any Smedge component processes, including Conspectus, Herald and Aegis, as
well as the core processes. This restriction implies Core Process Control, even if that restriction
has not been specifically set.

Users cannot access the Reset failures commands to reset Job or Engine failure counts.

Users cannot save the “default” Engine.

Users cannot save the “default” Job.

Users cannot stop work from any Job.

Users cannot submit new Jobs to the system using SmedgeGui.

Users cannot access the remote desktop viewing commands.

By default, Smedge starts with the following restrictions:

Core Process Control
Event Commands
Job Custom Pool
Save Default Engine
Save Default Job

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™ 10

Automatic Systems

Automatic Redundant Master

The central component of the Smedge system is the Master, which is in charge of keeping track of the Jobs and sending work out to
the Engines as needed, as well as basic system operation. In client / server terminology, the Master component is the “server” part that
the other components (the “clients”) connect to in order to send and receive data.

As the central manager of the system, this component is pretty important. It is essential that all of the machines on your network can
establish a network connection to the Master in order to operate. At this time, you must connect directly to the primary Master, and
you cannot use a redundant Master as a router. These are planned upgrades for a future release of Smedge.

Smedge does provide the ability to run the Master redundantly on several machines. The instances of the Master component that are
running and not acting as the “primary” master, will instead act as “mirrors”. They automatically update all information and are ready
to take over as the primary Master at any time, should the primary Master be stopped or go offline for any reason.

By default, Smedge handles this for you automatically when you start the SmedgeGui. The GUI will normally start an instance of the
Master and an instance of the Engine with it. If this happens to be the first Master on your network, it will be the actual primary Mas -

ter, controlling the whole system. If, however, a master is already running on the network, the redundant mirrors will simply copy all
of the Master data and wait around to take over as needed.

Manually Configuring the Redundant Mirrors

As you add more machines, the overhead for keeping full copies of the data can get burdensome. And if your hardware and network
are reliable enough, the redundancy can be unnecessary. You can disable the automatic redundant Master with the GUI with the fol-
lowing steps:

1. Choose System > Administrator Mode (if you're not already in Administrator Mode)

2. Choose System > Components > Set System Default Component Startup

3. Set the “Start the Master” option to “Do not start it”

4. Click OK

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 11

You may want to enable a few mirrors manually in order to provide the redundancy you need without overwhelming the system. You
can manually configure the GUI to override the default component startup option set above in the SmedgeGui options dialog box on
that machine. Again, you must be in Administrator Mode to access the option.

In more advanced installation, it makes more sense to run the SmedgeMaster component on the required nodes directly, and avoid us-
ing the GUI to reduce system overhead. The SmedgeMaster component can always be started directly by itself, in the standard ways
for staring executables on each platform (e.g., on Windows, double click the SmedgeMaster.exe program file to start it, or use a short-
cut, a batch file, or type the executable path into the Command Prompt, etc.).

The Master component process is also designed to be able to be run as a system service on all platforms, so you can run it with the
system startup, pick the user account that you want to be running the process, and have your Smedge nodes available without even
having to log into the console. Smedge includes tools in the Utilities folder of the program distribution that can aid in the installation
of the services. Also see the SmedgeMaster reference, and your operating system reference for configuring and managing system ser-
vices.

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 12

Automatic Master Location

If your entire Smedge network runs on a single subnet, and as long as there is no firewall blocking communication, Smedge will gen -
erally be able to automatically find the Master with no user interaction. However, if you want to use Smedge across multiple subnets,
you will have to point Smedge to the Master. There are two ways you may want to do this, which are the two ways available in the
Configure Connection dialog box.

In both cases, you can optionally specify one or more hosts and an alternate port for the Master. If nothing is set, the system will use
the default automatic location system, which is a UDP broadcast on the subnet. If you specify one or more host names (or IP ad -
dresses), Each will be tried, in order. This will repeat indefinitely as long as the process is running and not connected to the master.
You can add the special host name: * (a single asterisk character) to make an attempt using the automatic system.

If you specify a port, that port will be used to find the Master. Each instance of the Master only listens on a single port. Any client will
only ever find and communicate with a Master using the same port. The default port is 6870. You can use alternate ports to set up un-
related Smedge networks, perhaps a maintenance network and a production network, on the same machines.

GUI Only (Not Engine or Master

This sets the master GUI options for the current user account only. Any other components, even those started by the GUI itself, will
not use the options set here. This is useful for quickly switching a GUI between separate, unrelated networks running on different
ports without affecting other parts of the pipeline, such as submit or control scripts that are using the command line utilities.

Connection for this Machine

This tries to create or update the Connection.ini file in the Smedge program folder on the local machine. As such, any Smedge com-
ponent that is started from that program folder will use the settings from this file (unless that process options have been specifically set
to override the settings, using the GUI Only options). This is how you can specify at a machine level where to find the Master, and it
will affect every component run from that folder, even if the GUI did not start the component directly. This will even affect any cur-
rently running components the next time they try to find the Master.

Once you have created a Connection.ini file, you can copy that file around, or put include it in a disk image or virtual machine. Also,

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 13

Automatic Engine Mode

To reduce the Smedge overhead when a machine is primarily being used for rendering and not as an active interface to the system,
Smedge includes a feature called “Engine Mode” where the GUI disconnects itself from the Master, and shuts down any redundant
backup Master running on the machine. In this mode, the machine runs with about the same amount of overhead as if you ran just the
the SmedgeEngine component manually.

Automatic Engine Mode kicks in after a certain amount of time without any interaction in the GUI. The amount of time is configur -
able at the system level in the Administrator Options dialog box, and can also overridden for a specific machine in the SmedgeGui op-
tions. You can also manually enter Engine Mode using a menu command in the system menu.

If your computer's name includes one of the words: “render”, “node”, “blade”, or “smedge” and a number, or consists only of num -
bers, Smedge assumes that this machine is primarily meant to run as an Engine, and the GUI will start in Engine Mode by default the
first time you start Smedge. You can always use the Connect menu command to run in normal mode.

For successive runs, GUI will run in the same mode as whatever the last mode it was in when it shut down. Note that the Master com-
ponent is also stopped in Engine mode, unless your machine is the primary Master machine. When you restart a machine that was in
Engine Mode, the Master component is not started with the GUI, and is only restarted when you try connecting if your machine was
previously the Master when it last shut down.

In normal usage, this is not a problem. If you generally start the same machines up in the same modes, things will work consistently. If
you end up with no Master on your network, you will need to manually start the Master on at least one machine. If that machine was
not the master or an up-to-date mirror the last time it was running, you may have out of date job information. If you find this to be the
case, you can stop that master and try starting it on a different machine that may have been up-to-date.

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 14

Automatic Engine Settings

The default Engine settings are designed to allow you to get up and running quickly with default installations of the software. How -
ever, Smedge allows extensive customization of the options for how various products work through the product options. The GUI and
Engine command line shells both allow you to configure multiple engines at the same time, but you can only configure Engines that
are currently connected to the Master.

You can override the defaults that will be used for any new Engines that you connect, so you do not have to manually configure them
at all. To set the default, set up one engine as you want in the Configure Engine dialog box, then use the “Save as Default” button to
have the settings saved as the new defaults. Any engines that are currently online will automatically take on these new default values
for any options that were previously at the old default value. Any settings that had been customized from the defaults will remain. Ad-
ditionally, any new Engines that come online will automatically download and use these default instead of the standard defaults that
ship with the system.

You can also view and edit the Engine product default options in the Configure Master dialog, on the Product Options tab.

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 15

Automatic Executable Paths

Smedge often requires the location of a third party executable program file in order to run jobs for that product. Because these execut-
ables are often located in predictable paths, Smedge is often able to find these executable automatically. If you have not set a path
manually, and if no path option has been previously found, Smedge will try to find the executables when it starts up. This means that if
you have installed and started Smedge, then install a rendering product like Maya, if you restart Smedge, it will find the Maya installa -
tion automatically.

Note however, that once a path has been set in the options, whether it is set manually by you modifying the engine product options in
the GUI or with an INI file, or if Smedge finds the executable itself, it will not try to find the executable when it starts. This makes it
possible, for example, to set up multiple versions of a product with different paths without worrying that the path to an older version
gets updated to a newer version automatically when you don't want it to be.

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 16

Automatic GUI Preset

Once you set up at least one preset with a set of views, you can select a preset that is applied by default to every GUI that connects to
the system. Use the Administrator Options dialog to select the preset you want applied by default. Every GUI that connects will auto-
matically apply this preset view set. If the ability for users to customize views is not restricted, they can still apply any other preset of

views, or create or modify their own views. Any previous customized views will be lost when the new preset is applied, but all presets
saved on the Master will still be available in the Customize Views manager.

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 17

RLib INI File Syntax

RLib INI files build on the basic section, key and value scheme. Section names and Key names are stored in a case insensitive manner,
so watch out because “SECTION,” “Section,” and “section” will all refer to the same section.

Sections are delimited by text placed in square brackets:

[Section Name]
The square brackets will be removed, and any whitespace between the brackets and the text will be trimmed. Spaces are allowed in-
side the section name. A section name must be contained on a single line. If you have multiple sections with the same names, the val -
ues will be added to the same section, or will overwrite existing values with the same key.
Data is stored in sections in a key equals value format:

Key Name = Value
The equal sign character is the important token. Without this character, the data will fail to load correctly. Whitespace around the
equal sign will be trimmed off, along with any whitespace at the end of the data. You can surround your value in quote marks, which
will allow you to have actual whitespace as a value. If you do this, the quote marks will be removed. For example:

Space = " "

A line like this will set the value of a key called “Space” to be a single space character.

Unlike sections, keys can span multiple lines. Text that is found without an equal sign will be appended directly on the end of the last
found value. No extra space is added.

You can insert comment lines by making the first non-whitespace character of the line be either the semicolon (;), pound sign (#), or
single quote ('):

This is a comment line!
; So is this!
' And this too!

RLib loads the whole file at once, and provides access to the data loaded through the IniFile class. This class will be documented more
fully in the RLib API documentation. What this means, however, is that you cannot have multiple keys in the same section with the
same name. The last one read will override any previous values.

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 18

Alternate file locations

In the Smedge cross-platform system library, files can use a system of alternate locations to allow you to create and change your de-
fault configurations more easily. The alternate file location system is built into the basic File management system of the cross-platform
library that underlies all Smedge operation, but how it is used depends on your use of the Smedge APIL

When you are trying to just open an file, if the file is not found in the directory specified, or if no directory is specified as part of the
name, Smedge tries to find the file in other standard locations. The locations are searched in this order, and as soon as a file with the
same name is found in any of those locations, that file is loaded, and the searching stops.

The folders searched are:

1.The folder specified in the file path, if any

2.The current user’s options folder for the component application that is trying to use the file.

On Windows': C:\Users\User\AppData\Roaming\Uberware\Component
On Linux: ~/ .Smedge/Component
On Mac: ~/Library/Smedge 3/Component

3.The current machine’s options folder for the component application that is trying to use the file.

On Windows?: C:\ProgramData\Uberware\Component
On Linux: /etc/smedge3/Component
On Mac: /Users/Shared/Smedge 3/Component

4.The Smedge 3 program folder.

5.Any folders specified with the ~-OptionsFolder folder command line flag. If more than one folder is specified, they are
searched in the reverse of the order they appear after the command line flag.

6.Any folders specified in the SMEDGE OPTIONS PATH environment variable. If more than one folder is specified, they are
searched in the reverse of the order they appear in the environment variable.

The first file found is the one read, and the search is stopped as soon as a readable file is found. Using the API, if the file is found in
one of the alternate locations (any location from 2 through 6) it is possible to configure the file to copy the file from the alternate loca-
tion to the originally specified path. See the API documentation and headers for more information.

! On Windows XP the path is:
C:\Dcouments and Settings\User\Application Data\Uberware\Component

2 On Windows XP the path is:
C:\Documents and Settings\All Users\Application Data\Uberware\Component

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 19

Overloadable Options Files

The program options INI file has more advanced “overloading” functionality. Instead of loading the file only once, it actually loads the
file multiple times from several locations, allowing you to specify common default option values that can be specifically overridden
for a specific machine or user. This system is available to any file operation that uses the OptionsFile API system. Normally, this is
limited to files that contain the options and settings for a component application.

This system reads the file in the following order:

1.Every folder specified in the SMEDGE OPTIONS PATH environment variable. If more than one folder is specified, they are
searched in the order they appear in the environment variable.

2.Every folder specified with the ~-OptionsFolder folder command line flag. If more than one folder is specified, they are
searched in the order they appear after the command line flag.

3.The Smedge 3 program folder

4.The current machine’s options folder for the component application that is trying to use the file.

On Windows®: C:\ProgramData\Uberware\Component
On Linux: /etc/smedge3/Component
On Mac: /Users/Shared/Smedge 3/Component

5.For Shell components only:
The current user’s options folder for the component application that is trying to use the file.

On Windows*: C:\Users\User\AppData\Roaming\Uberware\Component
On Linux: ~/ . Smedge/Component
On Mac: ~/Library/Smedge 3/Component

If a file with the same name exists in more than one of the locations, it will be read from each location where it is found. If an key is
set in an earlier file, but not in a later file, then that key’s value will be used as the “default” value. If the key exists in more than one
file, then the file most recently read file will specify the key’s value. Any values unspecified in any file read will use the built-in de -

Note that the Master and Engine do not use the user’s options folder for storing options. Master and Engine options are always stored
for the machine as a whole, so location #4 is where the customized options are always stored.

> On Windows XP the path is:
C:\Documents and Settings\All Users\Application Data\Uberware\Component

4 On Windows XP the path is:
C:\Dcouments and Settings\User\Application Data\Uberware\Component

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 2()

.SJ Job Files

This file can be saved from SmedgeGui or using the Job command line shell, and can be used to submit or modify jobs using the Sub-
mit command line shell or by being loaded into SmedgeGui.

Each Job in the file is defined in its own section, where the section label is an ID for the Job. Note that when you submit jobs from .SJ
files, some of the parameters may be forced to new values, including the ID itself. However, in the context of a single .SJ job file, the
ID will be unique and can be used to build Job dependencies within the file.

Inside of the section, the Name = Value pairs specify all of the data for the Job. When you save a Job from one of the Smedge com -
ponent applications, the file will have every known parameter for the type of job. However, when you create the files yourself, you do
not need to include every single parameter. Any parameters you don't supply will have the system default value when you submit the
file as a new job.

At the least you must supply the Type. Without a Type, Smedge does not know what type of Job (which Product) you are creating. In
an SJ file, you must supply the Type as the ID. You cannot use the Product Name or Shortcuts.

For more information about the parameters available for each Product and which are required to get the Job to work correctly, see the

formation), you can use the ID you specified to access the customized Products.

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 2]

Variable Substitution

Smedge includes a powerful variable substitution system that is used in just about every component application and Module in some
way. Most often, this system allows you to generate a command line to spawn a work process using data from the Job to replace vari-
ables in a standard command line syntax. However, the system is also used by the Herald to extract Job data when performing an ac-
tion, and can be used for event commands attached to Jobs, and is used in many other places throughout the Smedge system.

The information in this section is primarily directed towards users that wish to create custom Virtual Modules. However, the parameter
system is also used when you are creating Job Event commands, and is also commonly used in the Herald to allow access to informa -
tion from the Job or Work that triggers the notification. For example, if you want to send an email when a Job finishes, you probably
want to include the Job name in the email, and the Parameter system allows you to do that easily.

Note that the parameter and command names are not case sensitive.

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 22

Syntax

The syntax for accessing a parameter is to start with a dollar sign, then surround the name in parentheses. You can optionally attach
one or more commands to perform on the parameter before it is substituted back into the resulting string. The full syntax is:

$ (ParameterName . Commands...)

The entire text from the dollar sign to the closing parenthesis will be replaced with the actual value from the Job object for the para-
meter named. The value may come from one of many places depending on the settings of the Job parameter being accessed:

1. If the ParameterName names a Job parameter, and that parameter has a non-empty value for the specific Job being ac-
cessed, that value will be used.

2. If the parameter names a Product option for the application type accessing it (e.g. an Engine Option for access by the En-
gine), and that option has been configured in the options for that component application, that value will be used.

3. Ifthe ParameterName names an environment variable, that variable’s value will be used.
If there is a hard coded default value for the parameter, it will be used.

5. Otherwise, the variable (everything from the '$' through the last ')' character) will be removed.

You can access any parameter value using its internal name. Be aware that this process is recursive: if you access a parameter that has
data that uses this syntax, that value will also be parsed and replaced with data before being replaced into the command line. Smedge
will check for direct recursion, where the parameter name appears inside the parameter value itself. However, it is possible to set up a
chain of two different parameters that become mutually recursive. This will crash Smedge. Avoid doing this.
You can set part of the variable substituted string to be dependent on a non-empty value found for a parameter by enclosing it in
square brackets. The entire text inside the square brackets will be dropped if the parameter inside the brackets cannot be found or is an
empty string. For example, say you have this:

[-left $(Left) 1
If a parameter named Left is found and has the value 100, the block will be replaced with this text:

-left 100

If, however, the parameter Left cannot be found, or has is an empty string, the entire block will be left out of the formatted string.

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 23

Parameter Commands

The optional commands will be processed after the value is determined and before it is substituted back into the string. Commands are
denoted with a period and then the command name, one of the names in the table below. You can chain commands by adding another
period and another command name. Commands are processed from left to right. All commands will be processed before the final res-
ult value is substituted back into the result value.

Some commands can take optional parameters. These parameters are separated from the command name by a colon character. For ex -
ample, to adjust the padding size for the pad parameter command to be 6 digits of padding, you would use a command like this:

$ (Frame.pad:6)

The characters in black are required syntax, Frame is the name of the parameter, pad is the command, and 6 is the parameter to the
pad command. The entire structure is replaced by the 6 digit padded value of Frame.

If you need to include a period character into a parameter command's parameter, you can use the backslash to escape the period or sur-
round the entire parameter command, including its own parameter, in quote marks.

These are the commands currently available. The command processing will happen regardless of the type of the parameter, so the res-
ult may be unexpected if you use it on the wrong type of parameter.

Command What it does
Absolute If the value refers to a filename or a relative path, it will make that path into the absolute path where the
file will be created on your system.
CopyLocally Copies the file to a local temp folder and returns the path to the local copy. If the source file exists and

either has not been copied, or is newer than the copy, it will be copied immediately upon the execution of
the command. If the command is accessed as part of a parameter for a Job, all files copied will be deleted
when the Job finishes. Otherwise the copied files will remain in the temp folder. The folder copied to is
$TEMP/smedge3/LocalCopies/job-id.

CutRoot Attempts to return everything except the root drive part of a full file path or directory

CutExtension Attempts to return everything except the extension of a file path

Default Replaces the current value of the given parameter with the default value for that parameter

Dequote Makes sure that there are no double quotes around the value, even if there is a space in that value.

Display For “Choice” type parameters.: Replaces the current value of the given parameter with the user display
string for the value type. For all other types, this command has no effect on the value.

End Returns anything after the last — or, character, or the whole value if there is no — or,

Enquote If there is a space character in the value, it will be surrounded by double quote marks, allowing the OS to

treat it as a name with a space in it.

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 24

Command

What it does

Extension Attempts to return the extension part of a file path
File Attempts to return the filename part of a full file path
Format Attempts to format the value as if it is an Rlib time value (count of milliseconds since year 0)
By default it will format the value like 2013/09/14 06:35:13.041
You can customize the format by adding a format string with a :string using strftime formatting, with the
addition of using %x for the milliseconds.
FormatDuration Attempts to format the value as if it is a count of milliseconds specifying a duration of minutes and
seconds to days and hours (similar to the formatting of the elapsed time in the GUI)
FormatSpan Attempts to format the value as if it is a count of milliseconds using the following format specifiers:
%% - Insert % sign
$D - Total days in this span
$d - Total days in this span (default $2d)
%$H - Total hours in this span
$h - Hours in the current day (default $02d)
M - Total minutes in this span
$m - Minutes in the current hour (default $02d)
%S - Total seconds in this span
%s - Seconds in the current minute (default $02d)
$X - Total milliseconds in this span
EP:e - Milliseconds in the current second (default $03d)
You can insert an optional width and pad character between the % and the specifier:
$[[0]width]char
By default it will generate a time like: 0:01:34:12.205
Hex Converts the value to a hexadecimal number
InternalSeparator | For “Parameters” type parameters: Replaces the current value of the given parameter with the internal
separator string used by that parameter. For all other types, this command has no effect on the value.
Local Checks the path to see if it can be converted to the local platform using the Path translation system.
MakeLower Converts the value to all lowercase letters
MakeUpper Converts the value to all uppercase letters
NiceName Replaces the current value of the given parameter with the parameter's user readable name string
Pad Converts the value to a padded, signed number. By default it will be padded to 4 digits, but you can
override the pad size using the optional parameter command
PadUnsigned Converts the value to a padded, unsigned number.
Path Attempts to return the directory part of a full file path
Root Attempts to return the root drive part of a full file path or directory
Safe Converts any characters that are unsafe for a filename into _ characters.
Separator For “Multi” or “Parameters” type parameters: Replaces the current value of the given parameter with

the separator string used by that parameter. For all other types, this command has no effect on the value.

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™ 25

Command What it does
Start Returns anything before the first — or , character, or the whole value if there is no —or,
TranslateContents | This command will attempt to perform a text file copy and parse operation on the given parameter. If the
parameter points to a readable file, and if you have configured path translations, the file will be read and
copied to the job local folder. Each line in the file will be tested for a translatable root, and the path in
that line will be translated. If the value is not a path to a readable file, if there are no path translations
configured, or if an error occurs, the result value will be just the original value.

Type Replaces the current value of the given parameter with a string that labels the type of parameter this is

UnixEpoch Converts a value from an Rlib time (milliseconds since year 0) to the standard unix time t format
(seconds since January 1, 1970).

WordUpper Capitalizes only the first letter of each work (separated by spaces)

Additionally, you can specify a sub-field from a “Multi” or “Parameters” type parameter by name as a parameter command, and the
value will be replaced by only the resulting value of that field or sub-parameter from the current full value. The names available for
use this way will depend on the specific parameter you are accessing. Additionally, these commands can also be chained so that sub-
sequent command will operate on that sub-field or sub-parameter value as if it was the original value used.
Some examples:
To access the directory part of a scene parameter you could use this syntax:

S (Scene.Path)
To access the filename without the directory part, you could use this syntax:

$ (Scene.File)
To access the start and end frames of a sub-range, you could use these:

$ (SubRange.Start) $(SubRange.End)

This converts a plain filename into the absolute path to that file, and then puts quotes around it if that absolute path happens to have a
space character anywhere in it:

S (Scene.Absolute.Enquote)
To get the Y value from the resolution sub-parameter of a Maya job's extra parameters as a 5 digit padded value:

$ (Extra.-x.y.Pad:5)

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 26

To get the creation time for a job with custom formatting:
$ (Created.Format:"Created %A, the %e day of %$B, year of our lord %Y.")

— Created Thursday, the 19 day of September, year of our lord 2013.

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 27

Common Parameters

The following tables present all of the parameters available in Smedge currently. Note that Smedge uses a “class hierachry” system to
add Job functionality. See the reference for each specific Product to see which of these common classes are included for that Product.
Authors of Compiled Modules, using the Smedge API, may not make use of the full class hierarchy, if they don’t need some function-
ality, so some of these parameters may not be available for these custom Modules. When in doubt, check with the author of the custom

Name is the parameter name you can use to access this parameter. This is the text that goes inside of the $(Name) syntax, or that you
use as a parameter with the Submit commandline shell to submit jobs, in a —Name syntax (See the documentation for Submit in the

information about what the type means. Get means that you can use this parameter to get a value with the $(Name) syntax. Set means
that you can set this value with the Submit command line shell (or programmatically with the Smedge API). Meaning gives a brief
description of how the parameter will be used. Default is the value that will be filled in for the Job if you don’t supply it at submission
time. Parameters in red must be supplied when you submit the Job.

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 28

Job

The Job class provides the basic, common functionality for all jobs and workers. Every Job and Work unit has at least the Job informa -

tion.

Name

Type

Get

Meaning

Default

CPUs

Int

The number of CPUs/threads assigned to this Job

0

Created

Time

The time when the Job was created

Set by Master

Creator

Text

|| (&

The Job’s creator string value

Set by Shell

CurrentDate

Text

| | <

Gets the current date formatted as a string. You can op-
tionally provide a formatting string for the date by putting
a colon and then the formatting string before any para-
meter commands or the closing parenthesis. See the RLib
Time API documentation for the time and date formatting
syntax. The default is %d-%b-%y

CurrentProcessID

Int

Gets the current process ID (assigned by the operating
system) for the calling process.

CurrentTime

Text

Gets the current time formatted as a string. You can op-
tionally provide a formatting string for the date by putting
a colon and then the formatting string before any para-
meter commands or the closing parenthesis. See the RLib
Time API documentation for the time and date formatting
syntax. The default is %H:%M:%S

DeleteJobEvt

Text

The event command to execute when the Job is deleted.
This command will have parameters expanded and then
will be executed asynchronously by the Master.

DispatchCPUs

Int

This is the count of CPUs that the work unit uses when
using Processor based distribution. If the processor distri-
bution is not enabled for the parent Job (CPUs = -1) this
value will be 0 for the work, and CPUs will be the num-
ber of processors available on the Engine.

ExcludeEngines

ID List

A comma separated list of Engine IDs to exclude from
this Job. Any Engines listed here will never be allowed to
work on this job.

FailureLimit

Int

Override the maximum number of failures that this Job
can have before no more work is distributed from it. Set
to -1 to use the Master Maximum Job Failures limit.

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

29

Name

Bype

Get

Set

Meaning

Default

FinishDisposition

Choice

What should happen to the job when it finishes:

-1 = Let the Master determine what happens

0 = Keep the job until manually deleted

1 = Delete the Job immediately upon finishing

-1

FirstWorkEvt

Text

The event command to execute when the first work from
this Job is started on an Engine. This command will have
parameters expanded and then will be executed synchron-
ously by the Engine.

ID

1D

The Job’s unique identification number

IncludeEngines

ID List

ke

A comma separated list of Engine IDs to include on this
Job. If the Engine is listed here, it will be allowed to do
work from this Job even if the Engine is not a member of
the Job's Pool.

JobAssignWorkEvt

Text

The event command to execute when the Master is about
to assign work to an Engine. This command will have
parameters expanded and then will be executed synchron-
ously by the Master.

JobFinishedEvt

Text

The event command to execute when all work from a Job
has finished or been permanently canceled. This com-
mand will have parameters expanded and then will be ex-
ecuted synchronously by the Master.

JobFirstStartedEvt

Text

The event command to execute when the first work from
this Job is started. This command will have parameters
expanded and then will be executed synchronously by the
Master.

JobLocalFolder

Dir

The Job specific local temp folder where files are copied
by the CopyLocally parameter command

JobSummary

Text

This is a nicely formatted summary of the job for display-
only. Note that the exact format of this value will depend
on the type of Job (primarily on the type of distributor ac-
tually). See SequenceDistributor and SliceDistributor for
examples of how this parameter is used.

LogDir

Dir

The application’s log directory

MachineDir

Dir

The machine-wide options folder

MachineName

Text

The name of the local computer

MachineNumber

Int

ltitadke

A number hash based on the local computer’s name (there
is a very small, but non-zero chance that two different
machines’ names will hash to the same value).

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

30

Name Type Get | Set Meaning Default
Name Text X X | The Job’s name
Note Text X X | The Job’s note
OvertimeKill Float X X | If a worker goes this many times over the average time | 15
for workers from this Job, the worker will be timed out
and requeued. (Set to 0 to disable).
Parent 1D X The Parent Job’s identification number
ParentName Text X The Parent Job’s name, if it can be found
PercentDone Float X The percentage complete of the Job. The value actually
comes from the Job's distributor, so exactly how it is cal-
culated varies by the different types of Jobs and their dif-
ferent distributors.
Pool 1D X X | The Job’s pool identification number Whole System
Priority Int X X | The Job’s priority value 50
ProductID ID X The “Product” ID. For a Job, this is the Type. For Work,
this will be the Type of the Job. It will always correspond
to a known product ID from the list of Products or a cus-
tom Product you created.
RAM Int X X | The amount of memory assigned to this job 0
SmedgeDir Dir X The Smedge program folder
StaggerCount Int X X | The stagger start count of workers to start at once 1
StaggerStart Float X X | The number of seconds to stagger the worker starts 0
(0 disables the stagger start system, so work starts as soon
as possible)
Status Int X The Job’s current status code. Built in codes:

-1 = Paused

0 =Pending

1 = Assigned (work only)
2 =In progress

3 = Changed (work only)
4 = Work Aborted (work only)
5 = Work Unsuccessful (work only)
6 = Work Lost (work only)
7 = Complete

8 = Canceled

9 =Failed

10 = Timed out
11 = Restarted
12 = Orphaned

(work only)
(work only)
(work only)

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™ 31

Work. Uses the application’s GetEngineByID() method to
get Engine data associated with the ID from WorkEn-
gine. Returns “No Engine” for NULL IDs, and the ID as
the name if the name cannot be found from the applica-
tion.

Name Type Get | Set Meaning Default
StatusAsString Text X The Job’s current status as in a human readable format
SystemID 1D X The unique system ID.

TempDir Dir X The system’s TEMP directory

Type ID! X | X? | The Job’s type identification number

TypeString Text X The Job’s type’s Name string

UsageLimit Int X X | The limit for this job to have outstanding -1

UserDir Dir X The user’s options folder

WaitForJobID ID X X | The ID of another Job in the system that the current job
must wait for. As long as a Job with the given ID exists
and has pending work, no work from this job will start.

WaitForWholeJob Bool X X | If the ID of another job is supplied in WaitForJobID, | Yes
this option determines if the whole job must be complete,
or if the distributor is allowed to start sending work when
the waited for job is still only partially complete. Exact
implementation depends on the distributor.

WorkAssignedEvt Text X X | The event command to execute when the Master has
asked the Engine to start work from a Job. This command
will have parameters expanded and then will be executed
synchronously by the Engine.

WorkEngine ID X X | The ID of the Engine that is assigned to perform the
Work. NULL if the work has never been assigned to an
Engine or for Parent Jobs.

WorkEngineName Text X The name of the Engine that is assigned to perform the

! When setting the Type using the Submit shell, you can generally use any number of possible values, including the ID, the Product’s Name, or any of the defined Short-
cuts for that Product. See the Products chapter for a reference of all values you can use for every Product currently distributed with Smedge.

2 Once a Job has been created, you cannot modify the Type.

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

32

Name

Bype

Get

Set

Meaning

Default

WorkFinished

Text

This is a special parameter that can be used to broadcast
some information associated with the work finishing. Job
classes use this internally to pass data about the work that
finished back to the parent Job. Derived Job classes are
free to use this in whatever manner they wish. By default
it is simply ignored by the Job, but may be used by the
standard distributors to help keep track of available work.
See SequenceDistributor and SliceDistributor for ex-
amples of how this parameter is used.

WorkFinishedEvt

Text

The event command to execute when the Engine has fin-
ished a work unit. This command will have parameters
expanded and then will be executed asynchronously by
the Engine

WorkFinishedSuccess-
fulEvt

Text

Called immediately after WorkFinishedEvt for successful
work. This command will have parameters expanded and
then will be executed asynchronously by the Engine

WorkFinishedUnsuccess-
fulEvt

Text

Called immediately after WorkFinishedEvt for unsuccess-
ful work. This command will have parameters expanded
and then will be executed asynchronously by the Engine.

WorkParameter-
ChangedEvt

Text

The event command to execute when the Engine has de-
tected a change in a parameter for a currently executing
work unit. This command will have parameters expanded
and then will be executed asynchronously by the Engine.

WorkPostExecuteEvt

Text

The event command to execute after the work executes
but before the result is sent to the Master. This command
will have parameters expanded and then will be executed
synchronously by the Engine.

WorkPostExecuteSuccess-
fulEvt

Text

Called immediately after WorkPostExecuteEvt for suc-
cessful work. This command will have parameters expan-
ded and then will be executed synchronously by the En-
gine.

WorkPostExecuteUnsuc-
cessfulEvt

Text

Called immediately after WorkPostExecuteEvt for unsuc-
cessful work. This command will have parameters expan-
ded and then will be executed synchronously by the En-
gine.

WorkStartedEvt

Text

The event command to execute when the Engine has ac-
cepted a work assignment and is about to start working.
This command will have parameters expanded and then
will be executed synchronously by the Engine.

Smedge 2014 Update 1 Administrator Manual

© 2004

- 2013 Uberware™

33

ProcessJob

ProcessJob provides the data and services necessary to have a Product that performs work by launching a separate process to do the
work. This is how most Products work in Smedge. The alternative is to have the SmedgeEngine process actually do the work itself as
code directly compiled into the Module. For example, the Large File Transfer job actually does not use a separate process to do the
work, but simply does the requested operation directly in SmedgeEngine.

Name

Type

Get

Set

Meaning

Default

CheckReturnValue

Bool-
Override

X

X

Allows you to bypass the check on the code returned
from the spawned child process. When enabled, any non-
zero return value is interpreted as an error, resulting in
the work being requeued.

(yes)

Engine Default

DetectErrors

Bool-
Override

Determines if the process output is monitored for error
messages

(ves)

Engine Default

ElapsedProcessTime

Int

The total elapsed processor time (in milliseconds) of the
process when it has finished (as reported by the OS).
Only available after the process has finished.

ElapsedRealTime

Int

The total elapsed real time (in milliseconds) of the pro-
cess when it has finished (calculated: time at finish -
time at start). Only available after the process has fin-
ished.

EnvironmentParameters

Text

This value will be expanded with any data from the Job
and exported to the environment as the
SMEDGE_WORK_PARAMETERS environment variable.
Note: If this value expands to an empty string, the envir-
onment variable will not be set (or unset)

ErrorIgnores

TextList

A list of strings to look for in a line of output that has
been detected as an error by the containing one of the Er-
rorStarts values. This allows you to specify errors that
can be safely ignored by the system.

ErrorStarts

TextList

A list of strings to look for in a line of output that can be
used to detect that an error has occurred in the processing
of a work unit. If any of the elements of this list is found
in a line of output and none of the Errorlgnores values
are also found in that line, the work is assumed to have
failed, and it will be immediately terminated and re-
queued for later processing.

Smedge 2014 Update 1 Administrator Manual

© 2004

- 2013 Uberware™

34

Name

Type

Get

Set

Meaning

Default

Executable

Path

The rendering executable program file. You normally
won’t need to access this yourself. It’s handled automat-
ically by ProcessSequence.

IdleTimeout

Float

The number of seconds that a spawned child process is
allowed be running without consuming any CPU re-
sources before it is considered timed-out, and requeued.

300

LimitMemoryUsage

Bool-
Override

Determines whether Smedge should set a hard limit on
the amount of memory that the process can access based
on the RAM value (see above). If memory distribution is
enabled, and the job RAM value is a positive integer, and
this value is on (either for the Job or if the job is at the
Engine Default setting, for the Product options on the
Engine), then the process will be limited to the number
of megabytes of memory specified. If it attempts to use
more than that, the process may fail.

Engine Default
(no)

MinimumTime

Float

The minimum amount of time (in seconds) for a work
run before it can be considered successful. If the process
takes less time than this, it is assumed to have failed,
even if no error message is reported and the result code
from the process is 0.

-1 (not used)

OutputLogFile

File

The full path to the saved captured output file for the
process. This path is relative to the Engine doing the
work, and may not be correct on any other machine.

OutputPath

Dir

The directory in which saved captured output files will
be saved.

OutputPeer

Text

o

The IP address and port where the work is serving the
output from.

ProcessPriority

Choice

>~

e

One of “Normal Priority” “Low Priority” or “Idle Prior-
ity”

Normal Priority

Password

Password

The password that will be used to gain access to reques-
ted resources, if needed.

ReportIgnoredErrors

Bool-
Override

o] I

x| X

Determines whenter SmedgeEngine will report errors
that it ignores back to the master as part of the job history

Engine Default
(yes)

Resources

TextList

>~

e

Windows only. A semicolon separated list of Drive=Share
pairs that the work unit will try to ensure are available
before starting work.

Smedge 2014 Update 1 Administrator Manual

© 2004

- 2013 Uberware™ 35

Name Type Get | Set Meaning Default
ShowProcess Bool- X X | Determines whether the SmedgeEngine should try to | Engine Default
Override spawn the process visibly, instead of hidden from view. | (no)
This may not have an effect if the spawned process does
not have any kind of user interface, or if SmedgeEngine
is running as a background process on the machine.
StartDirectory Dir X X | The directory that will be made the currently active dir-
ectory when the process is started.
Username Text X X | The username that will be used to gain access to reques-
ted resources, if needed.
LastError Text The last error detected by jobs/work and assigned as the

final note to the JobHistory on Failure

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

36

RenderJob

RenderJob is designed around the concept of a Job that renders an image or image sequence from an image processing or generation
tool. It is optimized for 3D design and animation and 2D compositing tools, but it can be used to manage most related systems as well,
such as file conversions, cache export, simulations, etc. The terms may differ, but the concepts of these processes are similar, and can

fit into this paradigm.

The key elements it provides are the concept of the "scene" that is being rendered, and the "images" it produces as a result. It also
provides some common error detection associated with the operation of the process and the results it produces. The process will be
spawned with parameters to process the "scene" using the distributor's sequencing information, and will make the "image" results
available in the system, if it can.

Name Type Get | Set Meaning Default
CheckImages Bool- X X | An option to have the Job try to validate any detected | Engine Default
Override frame filenames before reporting a successful comple- | (yes)
tion.
DeleteBadImages Bool- X X | An option to have any image files that are detected but | Engine Default
Override that fail the image check test (if enabled, see CheckIm- | (no)
ages) deleted at the end of the work unit.
DetectImageFormat Bool- X X | An option to have the Job try to automatically detect the | Engine Default
Override image formats from detected rendered image filenames. | (yes)
ImageDir Dir ! T | If it exists in a derived class, this value will be prepen- |’
ded to any detected image filename if they are not
already absolute. If this value is empty or cannot be
found, RenderJob will try to prepend the start directory
to any relative filenames. This parameter does not exist
in this class, but will be used if it exists in your Virtual
Module.
ImageFile File X X | Get will return the last detected image file, Set will ap-
pend the given file to the list of detected files, and will
try to adjust the ImageFormat and ImageDir if possible.
ImageFileList Text X Returns the entire list of detected image files, enquoted
and separated by spaces. Useful, for example, for
passing the entire list of image files to another applica-
tion, for display or compositing.

7 Access and default depend on the implementation in the derived Product.

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

37

Name Type Get | Set Meaning Default
ImageFormat TextList X X | A list of the filename path and formats. The format
string is kept in printf format, where the frame range is
replaced with a formatting string like %d. This paramet-
er is used by Smedge Shells, but its value does not affect
the actual rendering output. You must supply parameters
specific to the individual Products to actually configure
how the product will format the rendered frame files.
Scene File X X | The scene file that the user selected to process.
SequenceName Text X Always returns “$(SequenceName)” as an unformatted
string. This is used internally by Shell programs as a
placeholder for the view sequence command.
TranslateSceneContents | Bool- X X | An option to have the job try to translate the scene con- | Engine Default
Override tent script for any paths it finds using the Smedge path | (no)

translations that may have been configured. Note that
this is disabled by default because it will likely fail with
any binary format scene file. Products that use text
format scene files will work. Other products use at your
own risk.

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

38

RepeatMergeDistributor

RepeatMergeDistributor is a Job Distributor. This is the component of a Job that the Master uses to actually divide the job up into
work units to be distributed to the Engines. RepeatMergeDistributor distributes work as a number of separate repetitions of the same
render that can then be merged together. This is used, for example, to control single frame rendering for the light simulation type ren-
derers, like Maxwell. Each repetition of the render is given a unique seed value and then the resulting rendered frames from each ma-
chine are merged together to produce a higher quality result than can be achieved by a single machine in the same amount of time. The
distributor requires that the Job type is based on RepeatMergeJob, as the Job and Distributor must work together to properly coordin-

ate the work.

Name Tpe Get | Set Meaning Default

ClientL ID X X | For merge work units, this will be the ID of the local cli-
ent that has one of the files to be merged.

ClientR ID X X | For merge work units, this will be the ID of the remote
client that has one of the files to be merged

FileLL ID X X | For merge work units, this will be the ID of the local file
to be merged.

FileR ID X X | For merge work units, this will be the ID of the remote
file to be merged

Frame Int X X | The frame number for the work unit. Frame 0 is a spe-
cial value used for “single frame” type jobs

MergeExecutable File X Engine option for the merge executable path

Mode Choice X X | Distribution mode for repeating frames. One of:

0 Dispatch all repetitions from each frame
1 Dispatch every frame once then repeat

Output File X X | The full path and filename of the rendered image file

RealFileLL File X For merge work units, this is the full path and filename
of the local file to be merged

RealFileR File X For merge work units, this is the full path and filename
of the remote file to be merged after it has been down-
loaded

RealOutput File X The full path and filename for the output for this work
unit.

Repeat Uint X X | For parent jobs, this is the number of repetitions for each
frame. For work jobs this is the repetition number for
this particular work unit.

Seed Uint X X | The unique seed value for a given work unit to ensure
that it can be correctly merged (renderers may have their
own name for this value, like CPU ID)

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

39

Name

Type Get | Set Meaning Default
WorkType Choice X X | The type of work object that this is. One of:
0 Parent Job
| Render Work
2 Merge Work

Custom Commands

The RepeatMerge system also adds some additional commands that you can use to control the rendering process.

Stop and Merge

Stop All Work and Merge

This will stop a current running render, and allow it to be merged immediately at its current quality
level. Note that this only affects the specific work unit(s) you have selected when you request the
command, and won't stop any additional renders from starting in order to finish all of the requested

repetitions.
This will stop all currently running renders and start the merge process for all of them. Addition-

ally, no further renders will be started, even if there are outstanding repetitions that haven't been

rendered yet. You can access this command by selecting any work unit from the Job, the Job itself,

or any history element from the job.

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

40

SequenceDistributor

SequenceDistributor is a Job Distributor. This is the component of a Job that the Master uses to actually divide the job up into work
units to be distributed to the Engines. SequenceDistributor distributes work as subsets from a range. In Smedge, this generally means a
range of frames to render, and the subset is the number of frames that will be rendered at one time by one machine in one work unit.
Note, however, that SequenceDistributor simply uses the set range you supply, and does not know or care about how that set range ac -
tually applies to the product in question.

Name Tpe Get | Set Meaning Default
ActualPacketSize Int X In use, a work unit have fewer frames than the Job Pack-
etSize requests. This parameter will return the actual
number of frames in a specific work unit. This value will
be between | and the PacketSize
CustomRange Text X X | A user customizable range value for the Job that is not
used as part of the distribution of the Job. It is used by
some Shells such as CheckFileSequence to allow you to
override the range of frames to look for.
DistributeMode Choice X X | How the items will be distributed from the range: 0
0 = Default (determined by Master option)
1 = Forward
2 = Reverse
3 = Sample
The range of the sequence.

X | The packet size used by the parent Job to break the work | 1
up. Note that there may be fewer frames in the range
than the packet size allows, if the division came to the
end of a sequence.

Range Text X X | The entire range of the parent job. This can be a com-
plex range string including both — and , to separate ele-
ments.

If it exists in a derived class, this value will be used to
correctly calculate the renumbering. This parameter
does not exist in this class, but will be used if it exists in
your Virtual Module.

JobSummary Text
PacketSize Int

> | <

RenumberBy Text*

* The type currently needs to be set to Text to work correctly, but should generally be used as an integer value

* Access and default depend on the implementation in the derived Product.

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 4]

Name

Type

Get

Set

Meaning

Default

RenumberStart

Text ®

If it exists in a derived class, this value will be automat-
ically updated for each worker to correctly allow you to
renumber the sequence. This parameter does not exist in
this class, but will be used if it exists in your Virtual
Module.

SequenceBy

Text >

If it exists in a derived class, this value will be used to
correctly calculate the renumbering. This parameter
represents a different sequencing than just 1 at a time.
For example, you may want to render every other frame
from a sequence. To do so, add a parameter to your Job
class with this name. This parameter does not exist in
this class, but will be used if it exists in your Virtual
Module.

SubRange

Text

The entire range of the work, formatted as a string in
start-end format. There is no space in the formatted
range. If the work has only one frame, it will be returned
the same as if you used SubRange.Start or Sub-
Range.End.

UserRange

Text

If the CustomRange is not empty, it returns that value,
otherwise it returns the Range value.

WorkFinished

Text

The value should indicate the range of the work that has
just finished.

° The type currently needs to be set to Text to work correctly, but should generally be used as an integer or floating point value

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

4

SliceDistributor

SliceDistributor is a Job Distributor. This is the component of a Job that the Master uses to actually divide the job up into work units to
be distributed to the Engines. Slice distributor is designed to divide a single frame render into slices that are then combined back to -
gether into the final result. It distributes a worker for each slice, then a final worker that does the combination processing.

Name Type Get | Set Meaning Default
JobSummary Text X The repetition of the child Work or the number of slices
of the parent Job
Slice Int X X | The repetition number of a specific child Work
Slices Int X X | The number of slices to divide the parent Job into
WorkFinished Text X | The value should indicate the repetition of the work that
has just finished.

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 43

Dynamic Products

Several Modules use this simple Dynamic Product creation system to make it easy to support multiple versions of the software on
your Engine at the same time. The Products are defined in an INI file with the same name as the Module file. For more information
about the RLib INI file format, see the chapter on RLib INI File Syntax.

values that define that Product, and you can also add new Products. To override the existing Product values, just specify that Product’s
ID as the INI file section. For new Products, make sure to use a new unique ID. You can use the uidgen program included in the
Smedge distribution to generate UIDs.

Products are defined by creating a new section in the file with the Product’s ID. You can then optionally override any or all of the
parameters that define the Product. Any parameters you do not override will use the default value that the Module provides for the de-
fault Product.

[Product ID
Name = Product Name
Alias = comma separated list of short cuts used for submit -type
DefaultEnabled = yes OF no
Executable = full path to the executable for this particular Product
ShortHelp = short help message
LongHelp = longer help message
OverrideDefaults = A semicolon separated list of {Name} = {Value} pairs that will

change the default value of the named parameter for this Job type.
OverrideFlags = A semicolon separated list of {Name} = {Comma separated list of flags} pairs that will
change the flags of the named parameter for this Job type.

Currently this system is used by these Modues: AfterEffects.sx, Fry.sx, Lightwave.sx, Max.sx, Maxwell.sx, MentalRay.sx, Modo.sx,

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 44

Maya Products

the ability to customize the options shown in the “Render Overrides” parameter, and other parameters that are specific to how Maya
renders its scenes.

The Smedge Module definition file also allows you to override how the Maya module will look for detectable image files from the
Maya output stream, and you can override the default values and flags for any other parameter provided by the Maya module.

Smedge ships with a Maya.ini file in the Modules folder that includes definitions of all of the renderers that are supported through
Maya 2012, and several third party renderers that have been integrated in, like RenderMan for Maya and finalRender for Maya. You
must supply the values shown in bold. It also includes default "single frame" products for several of the built in renderers that support
region rendering by command line.

This is the definition of each product section in the Maya.ini file:

[Product ID 1
Name = The name of the product
Shortcuts = Comma separated list of alternate shortcut names
Help = Short help text
LongHelp = Long help text
CommandLine = The command line parameters to send to the Render . exe executable
DefaultEnabled = yes or no
Extra = The list of extra parameter internal names
SingleImage = yes or no
ImageCheck = Semicolon separated list of image filename search tags in this format:

(Line Start Text1 1/ (Image Filename Text End
FEither the Line Start Text or Image Filename Text End parameters can be empty for any entry.

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 45

ImageNotStart

ImageNotEnd

ErrorStarts

ErrorIgnores

CompositeCommand

The Parameters listed in the Extra

The detected image file will start with the specified text, and end before the specified end text
It will also automatically have whitespace trimmed and be dequoted.

= Semicolon separated list of text strings that will be sued to exclude lines from the image
detection system. Excludes any lines that starts with any of the given text strings.

= Semicolon separated list of text strings that will be used to exclude lines from
the image detection system. Excludes any lines that end with any of the given text strings.

= Semicolon separated list of text strings. If a line of output starts with one of these
Smedge assumes that means an error has occurred. And aborts the work unit.
If you do not include this value, it will default to the single entry Exror:

= A semicolon separated list of text strings. If one of these strings is found in a line of output
detected as an error because of an Error Start String, that line will be ignored, and the work
will not be aborted or marked as failed.

= Only used for single frame type renders. This specifies the default composite command for a
customized single frame type render. By default, there is no composite command for any single
frame Maya render type, but you can specify one in this file and it will be used by default so you
don't have to manually add it to your job.

field are also defined in the file. They are defined in the same format as Parameters are defined in

cludes definitions for every parameter available for every renderer included with the current release of Maya, available for reuse as
needed for each Product. For more information on what these parameters do, see the Maya software documentation.

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™ 46

Virtual Modules

Smedge 3 includes a module that allows the creation of custom render types via a relatively simple text file. The Module is called Pro-
cessSequence.sx and the text files used are called Virtual Modules. Virtual Modules are defined in a text file with a .PSX extension.

tion via a command line interface to render a sequence of frames. This lineage gives your virtual modules nearly all the functionality
you need not only to start and control the rendering of a sequence of images, but to detect and examine the rendered image files, to
make resources available at work execution time, and to capture and save the output from the spawned program. Virtual Modules can
handle both single scene rendering and one scene file per frame rendering.

When a ProcessSequence Module is loaded, it scans the directory it is in for all files with the .PSX extension. Each .PSX file is de-
signed to hold a single virtual Job type. Every file found by the module will be controlled by that module. If a type is loaded that has a
conflicting ID with an already loaded or otherwise existing type, it will simply be ignored. You should only have one copy of the Pro-
cessSequence module in a given directory. Otherwise, if multiple copies of the module are loaded, they will find all the same virtual
modules without actually loading any of them.

Because ProcessSequence does not recurse directories, it could be useful for testing purposes to have a copy of the ProcessSequence
module in a child directory with just the virtual module you are working on. This way, it will be run by a separate Module than any
others. It would be a good idea to rename this module if you do this, which will make it much easier to dynamically load and unload.

PSX Files are simple text documents in an INI style. ProcessSequence uses RLib’s IniFile class to handle the actual loading of these
files. See the RLib INI File syntax section for more information. Note that ProcessSequence does not use the standard RLib alternate
file location system to locate Virtual Module Files. It will only scan for files in the same directory as the compiled module file itself.

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 47

Parameter Types

Every parameter has a “type” that gives an indication of how this parameter is expected to be used. There are many types available,
but not all types will make sense for all applications. The parameters are passed around as text strings, but they may not be stored that
way. There may be some validation associated with some types when you set their value.

Type Elements Description

Alternate Alternate A combination of a Boolean value that will result in one of two names for the paramet-
er. Useful for alternate switches for a toggle value where two different names are used
for the choices. For example: [-blur/-noblur]

Bool Bool A true/false value, with customizable formatted value strings

BoolOverride BoolOverride | Adds a third possible state to a Boolean value for the Job type: Engine Default. If the
Job parameter is set to this value, then the Engine’s value will be used. This type re-
quires that the parameter is both a Job parameter and an Engine option to make any
sense.

Choice Choice Select one of a list of strings. You can have a different value for display and for use as
a formatted parameter.

Dir Directory A text field interpreted as a directory.

DirList Dir A list of directories separated by semicolons

File File A text field interpreted as a file. Has a prompt text and a filter. The prompt is displayed
to the user by Shells as part of the request to find a file on the local system. The filter is
a file selection filter like: C++ Files (*.cpp, *.cxx) |*.cpp;*.cxx|{All
Files}. If no filter is supplied, the filter will default to: {A11 Files}. If the string
includes the single filter {A11 Files} (case insensitive and including the {}s) an
default for the local system should be added by Shells appropriate to the local plat-
form. If the string includes the single filter {Executable Files} (case insensitive
and including the {}s) Shells should add the appropriate filter for the local platform
for locating executable files.

FileList File A list of files separated by semicolons

Float Preset Like Text, but interpreted to be a floating point number

ID Preset Like Text, but interpreted to be a UID in 8-4-4-4-12 hexadecimal format

Info Common Not a parameter, but an extra bit of textual information displayed with the parameters
by the Shell.

Int Preset Like Text, but interpreted to be a signed integer

Multi Multi Allows a single parameter to be displayed as multiple fields. Display using a name for
each field, and a custom separator string.

None Common No other controls are created. Useful for a switch in a list of Parameters

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™ 48

TBype Elements Description

Parameters Parameters A text field that can allow a sub-selection of more parameters. The sub-parameters are
determined using the separator and internal separator strings.

Password Common A text field with no presets, and Shells should obfuscate its display

Separator Common Not a parameter, but a visual separator in the Shell application that is displaying the
parameters

Text Preset A text field, with optional presets to fill it in

TextList Common A list of text items separated by semicolons

Time Preset Like Text, but interpreted to be a time (in milliseconds since midnight, January 1,
1900)

Uint Preset Like Text, but interpreted to be an unsigned integer

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™ 49

Common Parameters

for these parameters are defined as part of your Virtual Module definition file. There is no hard coded default for any parameter added
by the ProcessSequence Module.

Name Type Get | Set Meaning

ActualScene Text X This is a standardized way to access the actual scene file or mul-
tiple scene files that are used for a single work operation. If the job
is using a single scene file, this is identical to the $(Scene) para-
meter from RenderJob. However, if the job uses one file per frame,
this will expand to the correctly formatted scene file or files that
are being worked on in a single work unit. It uses the $(Scene-
NameFormat) and the $(SubRange) parameters to determine which
files are returned.

CheckForMulitpleFiles Bool This is a Shell Option that configures whether the shell should try
to detect multiple scene source fie sequences.
CommandString Text X X | The string that is used to build the parameters that are passed to the

rendering executable to allow it to do its job. Generally, this para-
meter will contain a string of other variables that will be substi-
tuted with other parameters for the work being executed. If set, the
Job parameter value will override the Engine Product option. If
neither is set, the default comes from the Virtual Module definition
file. If no default is given, the work may not execute correctly
EnquoteActual Bool X X | $(ActualScene) can automatically enquote scene files as needed.
Because multiple files may be returned and those files are separ-
ated by spaces, it can produce a command line syntax error to use
the .Enquote Parameter Command with that variable. You can use
this option to disable the automatic enquoting, if needed.
HideSubrange Bool X X | If Smedge detects that your scene is part of a scene file sequence,
setting this will cause the Job variable substitution system to return
an empty string for the work SubRange. This allows you to have a
command line that will include a frame range only for single scene
files.

ImageEndString Text X X | If aline is checked for an image, this text marks the end of the line,
and will be trimmed off from the detected filename. You do not
need to include any whitespace, because that will be trimmed off
automatically.

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 50

Name

Bype

Get

Set

Meaning

ImageNotEndString

Text

If a line starts with the Image Start String, but ends with this text, it
won't be considered a filename. This test is applied before the Im-
age End String test.

ImageStartString

Text

When parsing the output, lines that start with this text are assumed
to contain a rendered image filename. The filename is assumed to
start at the first non-whitespace character after this text. If left
empty, no filename detection will be performed.

MinimumNumberPadding

Int

This is a Shell Option that configures when searching for a scene
file sequence, any numbers found must meet or exceed this many
digits to be considered part of a sequence identifier.

SceneNameFormat

Text

For sequences of scene files, this is the formatting string that is
used to create the correct filename for each frame. This value is
normally automatically calculated by Smedge and should be blank
if the entire scene is in a single scene file

SuccessTexts

Text List

Allows you to define text that will be searched for at the beginning
of a line of output that would signify successful work. If there are
no SuccessText entries, then the normal work success tests are
done. However, if there are any entries in this section, then there
must be at least one line of output that starts with one of the
entries, or the work will be considered unsuccessful. You can spe-
cify as many of these as you need. Separate multiple entries with a
semicolon. The text is not case sensitive.

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™ 51

Reference

The Virtual Module definition file must contain at least a Module section. This section contains the basic information that Smedge
needs to identify and display the Product to users, and to keep it separate from every other Product. Additionally, you can provide data
to create your own custom parameters. Custom parameters will be maintained as part of the Job data, and you can configure how they
are interpreted and displayed to users.

The Module Section

This is the information that identifies the virtual Job type in the system. The entries in this section define the Product to the system,

ID

This is a unique identifier for this Job type. Smedge uses the standard UUID (or GUID) format for this value. This is a 16 byte number
that can be pretty well guaranteed to be unique in the known universe under most circumstances. You must provide an ID that is
unique to your whole network, or you will have real problems. ProcessSequence will not allow virtual modules with conflicting IDs to
load on a single application, but if you have differences between machines on the same network, you could experience erratic behavior
or crash when data from one type of job is forced into a conflicting type.

ProcessSequence expects this number to be in the standard 8-4-4-4-12 hexadecimal format:

12345678-9ABC-DEF0-1234-56789ABCDEF0

Case does not matter. You can use RLib to generate this value (see the uidgen sample program for an example), or you can use your
favorite UUID generating program (for example there is one that comes with the Microsoft Visual Studio compiler).

Command

Virtual Modules work by spawning a child process via a commandline interface. This element provides the actual commandline para-
meters passed to the executable. Because these modules actually inherit from the ProcessJob base class, you also have a parameter
called Executable, which can be used to provide the rendering executable program.

What ProcessSequence normally does is build a commandline by getting the value of the Executable Job parameter, adding a space if
needed, then formatting this command value on the end. But there are many other options. For example, users can override a default
Executable as an option for the Engine. In this case, if the Job’s parameter value is empty, the Engine’s option value will be used. If

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 52

that, too, is empty, then the default set for the type will be used. If there is no default set, no text will be added to the actual command -
line.

For the command string part, you can use a variable substitution system to get the actual value of any other Job parameter by name.

You can use any parameter defined in the Virtual Module file, or any parameter defined in the base classes.

Name

This is the nice, user-readable name for this Job type. It is displayed in the Shells for all Jobs of this type.

Shortcut

This is a comma separated list of alternate names that refer to this type. These may be useful as shortcuts for using commandline based
Shells to interact with the Job type. For example, the submit program will use these as alternates names to determine what Job type
you are trying to create.

Help
This is a short help string that Shells may display to users. In this field (and in this field only) you can use the special character se -
quence \n (a backward slash followed by a lowercase letter N) to signify a line break. If you need to have a literal \n in your string,

double the backslash. Because \n is the only sequence that Smedge will look for, you do not need to double the backslashes in any oth -
er situation.

Details

A more detailed help string that Shells may display to users.

DefaultEnabled

You can determine if this type will be enabled by default when an Engine encounters it for the very first time. If you set this to a value
that will be parsed as true (“True” “Yes” “On” or “1”), then an Engine will enable this Job type the first time it is loaded. Otherwise,
the type must be manually enabled by users.

ImageStartText

You can supply one or more values here which the Virtual Module will use to try to detect rendered image filenames from the output.
The work unit will watch the output from the process for a line that starts with one of these texts. The first non-whitespace character

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 53

following whichever string is detected will be assumed to be the beginning of the filename. You can use parameters in this text, and it
will be translated when the work starts, based on the current values of the work unit. Separate entries using the semicolon (;) character.

ImageEndText

You can supply one or more values that will be search for from the back of any line determined to be an image line using the Image-
StartText values. If one of these strings is found, the filename will be assumed to end with the last non-whitespace character before
this text. Whitespace is automatically trimmed from the parsed lines, so you don’t need to add it here if you just want to trim off trail -
ing whitespace. Separate entries using the semicolon (;) character.

ImageNotEndText

You can supply one or more value that will be searched for from the back of any line determined to be an image line using the Image-
StartText values. If one of these strings is found, then any lines that start with the ImageStartText value that end with this value will
be ignored as potential image filenames. Separate entries using the semicolon () character.

CheckForMultipleFiles

Virtual Modules can handle products that use either a single scene file for a sequence, or products that use a sequence of scene files,
one for each rendered output that is produced. In order to enable the extra processing to detect multiple source scene sequences, set
this value to yes. The system expects that the last set of digits in the filename are used to put the scene files into sequence. Some ex -
amples of sequenced filenames that Smedge will understand:

/Volumes/Work/Scene/Folder/Sequence01l2 ver2.0122.input
X:\Projects\Animation\File01115.input
/usr/data/sequence/0124

If you set this value to ne, or if you do not supply this key in the Virtual Module file, then this processing is disabled, and the scene
file will be assumed to be only a single file for all of the frames in the Job.

Custom Parameters

The real power of Virtual Modules comes in defining your own Parameters. You can then use these parameter types as part of your

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 54

There are actually two sections that you can use to define parameters: PrimaryParameters and SecondaryParameters. The only dif-
ference between the two is the order in which the parameters are added to the Job Type Information. “Primary” parameters are added
to the info data before the underlying base classes, and “Secondary” parameters are added after. The order of the parameters has no
meaning to the actual operation of the work, but may affect the order in which parameters are displayed in Shells.

The name you supply is the internal name of the parameter, which is the name that is used in parameter substitution. This internal
name must not conflict with any other internal name for a parameter or a command in the virtual module, or any of its base classes.
See above for a full list of the names already used. Because the parameter name is not generally shown to users (the “NiceName”
value is shown instead), it is customary not to use spaces in parameter names. This helps differentiate between parameters and com-
mands. Note that the NiceName, which is displayed to users, can be anything you wish, but it’s probably a good idea not to let this
name conflict with other names so that you don’t confuse users.

The ProcessSequence module will iterate through all of the keys in these sections to determine what parameters are going to be added.
The key name is ignored in this iteration, but can be used to determine the order in which parameters will be added, if you care. The it -
eration will go through the keys alphabetically (case insensitive, ASCII order). Remember this is using a text comparison, so a key of
“10” will be parsed before a key of “2”.

Each value will be the internal name of a parameter. ProcessSequence will expect that there is a section with a matching name that is
used to actually load the parameter information. These sections contain the following elements:

Type
You must provide a type for the parameter. This is used to determine what other data is available in the Job Type Information for this

available.

Common Elements
All parameter types can contain these elements.
RealName This is an optional element that allows you to specify an alternate real (internal) name for the paramet -
er. If no RealName is supplied, the real (internal) name for the parameter will come from the section
name in the INI file. This element is useful when you need to ensure that parameter names are case

sensitive, because INI files are not case sensitive in Smedge.

NiceName This is the name of the parameter that will be displayed to the user.

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 55

Help This is some help information that Shells may display to the user when interacting with this parameter.
Default This is the default value for this parameter type
Flags This is a comma separated list of the flags that affect how this parameter is used. You can have any
combination of the following values:
Name Meaning
Parameter The parameter describes a value member of the Job object
Required Modifies Parameter. This parameter must have a value associated with it. Without a value associated,
the parameter is ignored
Advanced Modlifies Parameter. This member is considered an “advanced” parameter. Exact interpretation is left up
to the Shell.
Option The parameter describes an option for this Job type.
Master Modifies Option. This option is used by the Master. Currently ignored...
Engine Modifies Option. This option is used by the Engine.
Shell Modifies Option. This option is used by the Shells.
NoOptionDefault The default is not used for this parameter when shown as an Option.
NoParamDefault The default is not used for this parameter when shows as a Parameter.
NoInputDisplay This parameter is not shown by Shells to input or change parameters.
NoOutputDisplay This parameter is not shown by Shells to display Job parameters.

Preset Elements

For the types that can have presets (see the list of types above), all of the common elements are allowed, as well as these elements

Choices

This is a comma separated list of preset choices that can be made available to the user. If items are sup-
plied here, they will be made available as presets in a manner appropriate for the Shell. For example, a
GUI may show them as entries in a combo box. But the value is not limited to one of these choices.
You must use the Choice parameter type if you want that behavior.

Choice Elements

For the Choice type, all of the common elements are available, as well as these elements.

Choices

This is a comma separated list of the choices available. These will be the only allowed choices, and
even the default must be one of these.

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 56

You can have each choice have a value that is displayed to the user that is actually different than the value that is substituted in the
parameter substitution. Each choice is in a DisplayName:ActualValue format. For example:

Choices = Red:r, Green:g, Blue:b

This will create a choice that displays “Red,” “Green,” or “Blue” in a Shell, but that substitutes to r, g, or b in the command string. If
you don’t put a colon into the choice string, the name and display name will be the same.

You should make sure that the default is one of the choices you have supplied. You must currently use the display name for the choice,
not the actual value. If you don’t supply a default, the first choice will be selected by default.

Multi Elements
For the Multi type, all of the common elements are available, as well as these elements.

Fields This is a comma separated list of the fields that make up this multi-value. The count of fields is de-
termined by this list, but empty elements are allowed (i.e., no text between two commas).

Separator This is the string that is used to break up the value into the fields, and that is inserted between each ele-

ment when assembling the multiple fields back into a single value. If you don’t supply a value for this,
the default, a single space character, will be used.

Bool Elements

For the Bool type, all of the common elements are available, as well as these elements

True This is the text value that will be substituted for a true value. If not supplied, the system will use "Yes"
by default.

False This is the text value that will be substituted for a false value. If not supplied, the system will use "No"
by default.

BoolOverride Elements
For the BoolOverride type, all of the Bool elements are available as well as this element

OverrideText The text value that is displayed for Job parameters in the third state (when the Engine option provides
the actual value for work execution).

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 57

Alternate Elements
For the Alternate type, all of the common elements are available, as well as this element

Alternate This is the alternate name that is used. The Name value is used for “true” or “on” and this alternate
value is used for “false” or “off”.

Dir Elements
For the Dir type, all of the elements of the Presets type are available, as well as these elements.

Prompt This is a prompt string that can be shown to users when they want the Shell to allow them to browse
for the directory (or file).

File Elements
For the File type, all of the elements of the Dir type are available as well as these elements

Filter This is a filter string that can be used by the file selection dialog to make it easier to find files based on
their extensions. The filter part will be a file selection filter like "C++ Files (*.cpp, *.cxx)|*.cpp;*.cxx|
{All Files}". No filter will default to {All Files}. If the string includes the single filter "{All Files}"
(case insensitive and including the {}s) the appropriate actual filter should be added by Shells for the
platform they are running on. If the string includes the single filter " {Executable Files}" (case insensit-
ive and including the {}s) the appropriate actual filter should be added by Shells for the platform they
are running on.

Parameters Elements

For the Parameters type, all of the common elements are available, as well as these elements.

InternalSeparator This is the string that is inserted in between a child parameter name (real name) and its value if that
child parameter is being added to the full parameter string. Defaults to a single space if not supplied in
a parameter definition.

Parameters This is a comma separated list of the parameter names that make up this list of parameters. This allows
you to create a group of parameters accessed with a single parameter name. SmedgeGui displays this
parameter type as a separate tab in the Submit Job window. (See the User Manual for more information
about this feature.)

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™

58

Separator This string is inserted between the name (real name) of the parameter and its child parameters string.
Defaults to a single space if not supplied in a parameter definition.

First you give each child parameter the name of the actual commandline switch that it uses. Then you create these parameters to work
in a manner that allows users to easily set and select which extra parameters they want to add to their commandline. The easiest way to
understand this is to see it in action. Check out the Extras parameter in the following example PXS file, and check out how it works in
the SmedgeGui Shell application.

Custom Commands

As with parameters, you can add custom commands to your Virtual Module. Currently, these commands are limited to executing a
commandline (after performing parameter substitution on it, of course!). Just like with the parameters, you can add your commands in
either the PrimaryCommands section or the SecondaryCommands section. The only difference is that the “Primary” commands are
added before commands from the base classes, and “Secondary” commands are added after. The order of the commands is not import-
ant to Smedge, but may affect the order they are displayed in Shells.

Each command must have a name that does not conflict with any parameter or command either defined in the Virtual Module file or
from any base class. Because Commands names are usually displayed directly to the user, the convention is to use spaces in command
names. Unlike Parameters, commands do not have a separate display name.

Command Elements

Commands have three elements.

Command This is the actual commandline that will be substituted and executed when this command is triggered
by a user.
Help This is a string that Shells can display to let the user know what this command is going to do

RestrictionName This is a string that Shells can use as part of the voluntary restriction system in Smedge. If you give
your command a restriction name, then you can use the Configure Master dialog box to set a restriction
on that command or not, using your custom name. Any restricted command will be unavailable at run
time if the RestrictionName is set as restricted, unless the application is running as an administrator.

Flags This is a comma separated list of flags, which can be any combination of the following values:

ForParent This command applies to parent Jobs

ForChild This command applies to child Workers

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 59

Separator A placeholder to insert a separator between commands. Shells should interpret this in
a manner appropriate to how that Shell displays commands to users.

Other sections

ErrorText

This section allows you to define text that will be searched for at the beginning of a line of output that would signify an error in the
work unit. Smedge will then assume that the work unit has failed and will requeue it.

You can specify as many of these as you need. The key name does not matter, but must be unique for each string you want to search
for. The text search is case sensitive.

SuccessText

This section allows you to define text that will be searched for at the beginning of a line of output that would signify successful work.
This section will take precedence over any other error detection systems. If there are entries in this section, then there must be at least
one line of output that starts with one of the entries, or the work will always be considered unsuccessful. However, if there are no
entries in this section or if this section is missing from your Virtual Module file, then the normal error detection systems will be used.

You can specify as many of these as you need. The key name does not matter, but must be unique for each string you want to search
for. The text search is case sensitive.

OverrideDefaults

This section allows you to override the default values for any parameter. Since you can just provide the default for custom parameters
defined in the file, this really only makes sense to override defaults for parameters from the base classes. Use the parameter name as
the key and supply your new default value.

Note that parameter defaults will still follow the defined flag for allowing display of the default value (the NoOptionDefault and No-

OverrideFilters

This section allows you to customize the filter strings for any File type parameters defined in ProcessSequence or any of its base
classes. The key should contain the internal name of the File parameter you want to modify the filter for, and the value specifies the
new filter string value.

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 60

OverrideFlags

This section allows you to customize the flags for any parameter defined in ProcessSequence or any of its base classes. The key should
contain the internal name of the parameter you want to modify the flags for, and the value specifies a comma separated list of the flags
you want for that parameter. The flags are replaced with the flags you specify, so be sure to specify all of the flags that the parameter

what they mean.

AutoDetect

This section allows you to configure a basic auto-detect ability to set the value of one or more other parameters when a parameter
value is changed by a user in a Shell. This system is not as sophisticated as the functionality you would have if you used a compiled
module, because compiled modules give you full access to the Smedge API and whatever 3™ party libraries you link into your module.

The key is the name of the parameter that triggers the auto-detect change. When this parameter is changed by the user, the parameters
listed in the value will then be changed as well, using the current values of any parameters requested. The basic syntax is Value =
Change/, Change...]. Each Change is in a ChangeValue = ChangeTo format. For the changes, the ChangeValue is the name of the
parameter that you want to automatically modify. No variable substitution is performed on this string. The ChangeTo string will be
variable substituted.

This syntax can be somewhat complicated. It is also additionally complicated by the use of the = character in the Value, which means
that you should not break these lines up onto multiple lines in your Virtual Module file. Examine this sample:

Scene = Name = [$(Project):]1$(Scene.File)

The Value that triggers the auto-detect is Scene. When the Scene parameter is changed by the user, the Change that will be executed is
“Name = [$(Project):]$(Scene.File)”. This auto-detect has only one Change. The ChangeValue is Name, which means that when the
Scene parameter is modified, the Name parameter will then also be automatically modified with the ChangeValue of “[$(Project): 1$
(Scene.File)”. The current value of the Project parameter and the new value of the Scene parameter will be run through the variable
substitution system to calculate the actual value that will then be assigned to the Name parameter.

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 6]

Example File

This is a simple example Virtual Module file that shows the basic structure and syntax. It does not actually support any particular ren -
derer, but is useful as an example of creating the file. Note that any comments (in green and starting with a ; at the beginning of the

more information.

Also be sure to look at the Virtual Module files that are included in the Smedge distribution to see other examples of what you can do
with a Virtual Module, and how to accomplish it.

ID

;
;
;

;

; ProcessSequence.psx

; This is a sample virtual Module file for a ProcessSequence.sx Module.

; Smedge 3
; Copyright (c) 2004-2005 Uberware

; The Module section includes the basic module information

[Module]

; Every Job type in Smedge needs its own unique ID. Make sure to modify this
; ID for each new type. Note that Jobs and options will store this type as

; well, so if you change this ID, you will lose any saved options, and be

; unable to use any saved jobs that rely on it. You can use the included

; commandline too uidgen.exe to create new IDs, or any other tool that will
; create a Globally Unique ID.

= 46D1CA19-FD89-4ad5-9A43-676A28764C3D

; The actual commandline is generated by assembling the executable and command

; fields and doing a member name substitution on any special parameters

; marked. Parameters are marked with the notation §$(name). Any parameters from

; ProcessSequenceJob or its base classes 1is available for use, as well as any

; custom parameters defined in this file. For a complete list of parameters

; available, see the documentation for the Job derived classes: SequenceJob,

; ProcessJob, and RenderJob (more may be available in later versions of Smedge).

; The most common parameters you will use will be:

S (Scene) - The scene the user can specify for the Job

S (SubRange) - The full range of the work formatted into a x-y string (no spaces)
S (SubRange.Start) - Just the start of the range of the work

$ (SubRange.End) - Just the end of the range of the work

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

62

; $(CPUs) - The number of CPUs that are assigned to this job.

; If you want to have a portion of the commandline conditional on a non-empty
; parameter value, you can surround that portion with square brackets: []

; The Command gives the defaults for these values.
; All values are overridable at both the Job and Engine levels.

Command = [-proj $(Project)]-start $(SubRange.Start) -end $(SubRange.End)
-format $(Format) [$(Extra)]$(Scene)

; Because ProcessSequence is derived from the RenderJob base class, it
automatically gets all of the functionality of a Rendering app, including
automatic frame name detection and verification. To enable this, you can
; provide output parsing strings here for detecting the filenames from the
output of the spawned process. If the detected names are not absolute

; paths, the Engine will look for a parameter called ImageDir and prepend

; that value, or, if that value is empty or cannot be found, the
StartDirectory value will be prepended.

~

~

~

~

~

; Look for lines that with this text. The first non-white spcace text
following this text is assumed to be the start of the filename. You can use
; parameters in these fields, and they will be translated when the Work 1is
started

~

~

~

ImageStartText = Rendering:

; Trim this text from the end of the line. Whitespace will be trimmed
; autmoatically, so you don't need to add it here.

ImageEndText =

; You can specify text that indicates that lines which may start with the

; ImageStartText string may not actually be images. If the line ends with

; this text, it will not be processed as an image. This test is done before
; the ImageEndText is checked and removed.

ImageNotEndText =

; The rest of the fields allow you to customize how users interact with your
; custom type

; This is the name displayed to the user for this type of Job

Name = My Job Type

; This is a shortcut you can use to create jobs of this type, say by a

; commandline. Values can be separated by commas. Whitespace surrounding values
; will be ignored.

Shortcut = myjobtype, myjob

; This is a short help string that some Shells may display to the user about this type

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 63

Help = This is a custom ProcessSequencedob type
; This is a more extended help text that some Shells may display to the user about this type

Details = There are no Shells that currently display this information, but
we're working on that. In the mean time, here's a nice long string of
information to get you started.

; This allows you to determine if this type should be enabled by default on
; an Engine that has never seen it before.

DefaultEnabled = No

; The PrimaryParameters section allows you to add custom parameter for the
type. These parameters are added before any parameters from the underlying

; base classes, so they will generally appear above them in Shells. The order
; of parameters is only important to Shells. You can order your parameters by
using a number for the key name. If two parameters have the same number, the
last one read will be the one used.

~

~

Parameters must have a unique name. This name is used internally to access
the parameter value, and is used as a section name in this file to describe
all of the parameter information details. The parameter name must not
conflict with any other parameter or command, either in this virtual Module
; file or in any of the underlying base classes. The parameter name 1s not
generally shown to users, so the general convention is to not use spaces 1in
; parameter names, and use spaces in command names.

~

~

~

~

[PrimaryParameters

1 = Format

; The SecondaryParameters section 1is the same as the PrimaryParameters, except
that these parameters are added to the Job type information after any

; parameters from the underlying base classes. This means that they will
appear below the underlying parameters in Shells. The order of parameters 1is
only important to Shells. The names of the parameters must not conflict with
any other parameters or commands, either in this file or in any of the
underlying base classes. The parameter name 1s not generally shown to users,
so the general convention is to not use spaces 1in parameter names, and use
spaces in command names.

~

~

~

~

[SecondaryParameters

1 = Extra
2 = Project

; The PrimaryCommands section allows you to add custom commands to the type.
Currently commands are limited to executing an external program via a
commandline. As with the parameters, Primary commands are added to the list
; before the underlying job classes. The only affect this has is the order of

~

~

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 64

~

display of commands in Shells. Commands can be ordered by a number in the key
; name. The Command name must not conflict with any other parameters or
commands. A command's name is also what is displayed to a user, so the
general convention 1is to use spaces in Command names an no spaces 1in
Parameter names.

~

[PrimaryCommands

1 = View Format Info
2 = Separator

; The SecondaryCommands is just like the PrimaryCommands, except that these
; commands are added after the underlying Job base classes.

[SecondaryCommands

; The ErrorText section allows you to define text that will be searched for

at the beginning of a line of output that would signify an error that Smedge
should assume would signify a failed work unit. You can specify as many of
these as you need, and the key name does not matter (but must be unique for
each different value you need). The text is case sensitive.

~

~

[ErrorText]
1 = ERROR:

; The SuccessText section allows you to define text that will be searched for

; at the beginning of a line of output that would signify successful work. If

; there are no SuccessText entries, then the normal work success tests are

; done. However, 1f there are any entries in this section, then there must be

; at least one line of output that starts with one of the entries, or the work
; will be considered unsuccessful. You can specify as many of these as you need
; and the key name does not matter (but must be unique for each different value
; you need). The text is case sensitive.

[SuccessText]

; The OverrideDefaults section allows you to override the default values for

; any parameter. Since you can just provide defaults for custom parameter types
; 1in their definition, this really only makes sense to override defaults for

; parameters from the base classes. Use the parameter name as the key and

; provide your new default.

; Note that parameter defaults will still follow the defined flag for allowing
display of a default for a Job parameter or an Engine/Shell option. See the
documentation of ParameterInfo for more information.

~

~

~

[OverrideDefaults]

Executable = MyProgram
StartDirectory = $(Project)/images

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 65

The AutoDetect section allows your virtual module to perform a basic
auto-detect ability to set the value of one or more other parameters

of a job based on the values of other parameters. This is not as cool as
what you get for doing a compiled module, where you have full access to the
; APIs for both Smedge and whatever 3rd party libraries you want to link to

; your module (e.g., the Maya module, if you wanted to actually open and work
; with Maya files in the AutoDetect logic.)

~

~

; The keys are in a Value = change[, change ...] sequence. The Value is the
; parameter that has just been modified. Each change in the list is also in
; a value=change syntax. The value here is the name of the parameter you

; want to modify, and the change is a string that will be run through the

; FormatStringWithParameters function, like the commandline. Use §(Name)

; syntax to access other job values

[AutoDetect]
Scene = Name = [$(Project): 1$(Scene.File)
; Now we have a section for each parameter and command to actually define the

; functionality. The name of these sections must correspond tothe names used
; above.

; Parameters

[Project]

; This is an example of a Parameter definition. You must provide at least a
; type and a name, and a flag if this is a Job object parameter or an option
; for the type. See the documentation for ParameterInfo for full details

; and requirements.

NiceName = Project

Type = Dir

Help = This is the project base directory
Default =

Flags = Parameter

; This is specific to the Dir type:

Prompt = Select the base project directory
[Format]
NiceName = Scene Format
Type = Text
Help = This is the custom type format. You must provide a valid format, or select one from the list
Default = ascii
Flags = Parameter, Required

; This is specific to the Text type (technically to all PresetsParameterInfo types):

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 66

Choices = ascii, binary

[Extra]
NiceName = Extra Parameters
Type = Parameters
Help = Extra commandline parameters you can pass to the executable.
Flags = Parameter, Advanced

; This is specific to the Parameters type:
; These are all of the sub-parameters that are used to generate this value

Parameters = -im, -x, -alpha, X
[-im]
NiceName = Image Name
Type = Text
Help = The base filename for the images
Flags = Required
[-x]
NiceName = Resolution
Type = Multi
Help = The X and Y resolution in pixels
Flags = Required

; These are specific to the Multi type:

Fields =X, Y

; Notice the whitespace is made part of the separator by using quotes. The
; quote marks will be removed when the file is read, but the spaces inside
; will be left as part of the value of Separator.

Separator =" -y "
[—alpha 1]
NiceName = Render Alpha
Type = Bool
Help = Include the alpha channel in the rendered image file
Flags = Required
[X1
RealName = -x
NiceName = Capital X
Type = Bool
Help = This parameter should appear as a capital X separate from the lower case x for the Resolution
Flags = Required

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 67

; Commands

[View Format Info]
; This is an example of a command section
Command = $(Executable) -viewFormatInfo $ (Format)

Help = Try to view the completed frame from the renderer
Flags ForChild, ForParent

[Separator]

Flags = Separator

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 68

Product Reference

This is a reference for all Products that currently ship with Smedge. The following information provides the Smedge default Products
from the suite of Job Modules included with Smedge. Many of these Modules support dynamic creation of additional Products, and

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 69

3D Studio Max

This Module is designed to control the 3ds max command line renderer included in versions 6.0 and later. This is a Compiled Module.

Copying the scene locally

Max has some issues when used in larger networks. Autodesk has confirmed that the Max program code itself can cause failures read-
ing the scene file when a large number of nodes try to read the same file simultaneously. To work around this problem, the Max.sx
Module has a system to copy the scene file to the local Engine's drive before starting the max renderer. In so doing, it can also gener -
ate a path file with all of the directories and subdirectories of from the directory in which the original scene file is located. This way,
any textures can be referenced relative to the scene file and can still be accessed even if the scene file is copied to a different folder. If
you have specified a path file for the job, the paths from that file are also read and added to the generated path file.

This system is implemented internally in the Module. You can use the CopyLocally parameter of a Job or option for an Engine to en-
able or disable this behavior. All Max Products (both single and multi-frame) can use this system. By default, it is not enabled. See the

General Information

Default ID A4FT726B0-A613-4f2b-94FB-42C812857459

Type Name and Shortcuts 3D Studio Max
Max
Max6

Parameters
Name Type Get | Set Meaning Default
CopyLocally BoolOverride | X X | Enables the Max scene file to be copied locally. See Engine Default
Copying the scene locally. (no)

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 70

Name

Type

Get

Set

Meaning

Default

Extra

Parameters

Extra parameters you want to send on the command
line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

LocalPathFile

BoolOverride

Enables the generation of the local path file (the MXP
file) when the copy locally system is enabled. The
local MXP file will not be generated if this is not on,
and the renderer will only look for textures in the de-
fault locations and any locations specified in the ori-
ginal MXP file.

Engine Default
(ves)

NthFrame

Text

Allows you to change the number of frames rendered
in a sequence. Make sure that your Packet Size is set
to a whole number multiple of this value. If blank, it
will default to 1

PathFile

File

A path configuration file (.mxp)

TimeLimits

Parameters

Max time limits

WorkPath

Dir

<<

altalle

Root location for job data folders

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

71

3D Studio Max (Single Frame)

This Module is designed to control the 3ds max command line renderer included in versions 6.0 and later to split a single frame across

General Information

Default ID €59d00dd-3c2e-4994-b665-ca5fdcbc92ed
Type Name and Shortcuts 3D Studio Max (Single Frame)
Max single
Max1
Parameters
Name Type Get | Set Meaning Default

CopyLocally BoolOverride | X X | Enables the Max scene file to be copied locally. See
Conpying the scene locally.

Extra Parameters X X | Extra parameters you want to send on the command
line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Overlap Int X X | The amount of overlapping pixels that border each | 10
strip

PathFile File X X | A path configuration file (.mxp)

TimeLimits Parameters X X | Max time limits

WorkPath Dir X X | Root location for job data folders

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

72

3D Studio Max (via SFRender)

e. It includes

General Information

Default ID 42906f£f2-25p4-4021-a391-39238e96922f

Type Name and Shortcuts 3D Studio Max (via SFRender)
max3
max4
max5
sfrender

Parameters
Name Type Get | Set Meaning Default
Extra Parameters X X | Extra parameters you want to send on the command-

line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 73

3Delight

General Information

Default ID 7582c8ad-cafd-4ac2-b5f0-a20101872527
Type Name and Shortcuts 3Delight
Parameters
Name Type Get | Set Meaning Default
Extra Parameters X X Extra parameters you want to send on the command-

line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

74

3Delight for Maya

The Maya.sx compiled Module now includes the ability to set up customized products for different renderers accessible through the
Maya command line interface. Each Product is a section in the Maya.ini file which is in the Module folder. You can add your own or
customize the existing ones in a similar manner to how you create Virtual Modules.

The RenderMan for Maya Product is designed to control the 3Delight for Maya plug-in for Maya. This product is included in the
Compiled Module Maya.sx. This will override any Render Layer renderer settings in your Maya 7 file.

General Information

Default ID 4p877075-b0d8-44a5-89dd-d62e557bff45
Type Name and Shortcuts 3delight4m
3d4m
Parameters
Name Type Get | Set Meaning Default

Extra Parameters X X | Extra parameters you want to send on the command-
line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Project Dir X X | The Maya project to use for rendering. If left blank,
no project will be passed to the renderer.

RenderDir Dir X X | Override the output folder

RenumberBy Text X X | The increment value for renumbering the frame files.
Blank defaults to 1

RenumberStart Text X X | The Job can be renumbered starting at this value. If
left blank, the file frame numbers will correspond to
the frames rendered

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

75

Name

Type

Get

Set

Meaning

Default

SequenceBy

Text

Allows you to change the number of frames rendered
in a sequence, using the -b flag. Make sure that your
PacketSize is set to a whole number multiple of this
value. If blank, defaults to 1

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

76

3Delight for Maya (Single Frame)

The Maya.sx compiled Module now includes the ability to set up customized products for different renderers accessible through the
Maya command line interface. Each Product is a section in the Maya.ini file which is in the Module folder. You can add your own or
customize the existing ones in a similar manner to how you create Virtual Modules.

The RenderMan for Maya (Single Frame) Product is designed to control the 3Delight for Maya plug-in for Maya. This product is

included in the Compiled Module Maya.sx. Using this product will override any Render Layer renderer settings in your Maya file.

General Information

Default ID

51C0OB8BB-D6C5-4c7f-AC01-C827B3F1D9E1L

Type Name and Shortcuts

3d4m-1
3Delight for Maya Single Image
3Delight for Maya Single
3delight4m-1

Parameters

Name

Type

Get

Set

Meaning

Default

CompositeCommand

Text

This is the command that can be used to re-assemble
the slices. No default is provided because Maya does
not include a system that can composite every pos-
sible type of image that it can create. You can supply
your own command, using job variable substitution to
find and place the slices. If this is blank when the
stitch work is ready to be sent, no automated compos-
ition of the image slices is done.

Extra

Parameters

Extra parameters you want to send on the command-
line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

77

Name Type Get | Set Meaning Default

Project Dir X X | The Maya project to use for rendering. If left blank,
no project will be passed to the renderer.

RegionEnd Multi: X The top, right corner of the current slice in pixels

X
Y
RegionEndPercent Multi X The top, right corner of the current slice as a percent-
X age (floating point between 0 and 1).
Y Note: This value is currently only correctly calculated
if the RenderRegion is the entire image size.

RegionName Text X X | The naming convention for each slice. You can refer- | Slice
ence other parameters in this text, and they will be | $(RegionStart.X)-
properly expanded at render time. $(RegionStart.Y)

RegionSize Multi X The size of the current slice, in pixels.

X
Y
RegionSizePercent Multi X The size of the current slice, in pixels.
X
Y
RegionStart Multi: X The bottom, left corner of the current slice in pixels
X
Y
RegionStartPercent Multi: X The bottom, left corner of the current slice as a per-
X centage (floating point between 0 and 1).
Y Note: This value is currently only correctly calculated
if the RenderRegion is the entire image size.

RenderDir Dir X X | Override the output folder

RenderRegion Multi: X X | This is the total sub-region of the full image size that

oLeft will be divided up to other machines. To render the
*Right full image size, use 0 for Left and Bottom, and the
*Bottom image width and height for Right and Top, respect-
*Top ively.

Fields: Left, Right, Bottom, Top

Separator: " "

SliceImage Multi: X X | The number of sections, horizontally and vertically, to

*Horizontal divide the image into.
*Vertical

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

78

Name Type Get | Set Meaning Default
SequenceBy Text X X | Allows you to change the number of frames rendered
in a sequence, using the -b flag. Make sure that your
PacketSize is set to a whole number multiple of this
value. If blank, defaults to 1
SliceOverlap Int X X | The number of pixels of overlap between the slices. | 50
Useful for reducing edge artifacts on the slices.
Slices Text X The total number of slices from the image that will be

rendered. Equal to:
$(Slicelmage.Horizontal) x $(Slicelmage.Vertical)

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

79

After Effects

This Module is designed to control the AfterEffects 6.x or later commandline renderer. This is a Compiled Module. It includes all of

This Module supports the creation of Dynamic Products with a simple INI file format. See the Dynamic Products chapter for more in-
formation.

Using Smedge with After Effects
After Effects works differently than most other rendering systems. Because of the variety of ways that you can configure and use AE
to render, see the supplemental Using Smedge with After Effects manual included in the documentation folder of the Smedge distribu-

tion.

Note that you cannot currently use Smedge to control After Effects rendering to a single movie file. You will need to render to an im-
age sequence of some kind, which you can then convert to a movie file if you need.

General Information

Default ID ef7£0373-3542-4d1d-80d0-bb8599fadc63
Type Name and Shortcuts After Effects
AE
Parameters
Name Type Get | Set Meaning Default
Comp Text X X | The name of the comp in the scene file to render
Extra Text X X | Extra commandline parameters you wish to pass to
the renderer.

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 80

The Air Product allows you control the Air renderer. This is a \

General Information

Default ID lee7351d-6d52-48£7-9bb8-df232d2faca4
Type Name and Shortcuts Air
Parameters
Name Type Get | Set Meaning Default
Extra Parameters X X | Extra parameters you want to send on the command-

line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

81

Agqsis

General Information

Default ID

89f86e8d-578e-4859-96b0-102153b79%a32

Type Name and Shortcuts

Agsis

Parameters

Name

Type

Get | Set

Meaning

Default

Crop

Multi

Define a crop window. Only the portion of the image
inside the specified region will be rendered. The co-
ordinates are in screen space, so a value of 0.0 is at
the top resp. left and a value of 1.0 is at the right resp.
bottom, irrespective of the actual resolution. Using
this option is equivalent to the RIB command Crop-
Window x1 x2 y1 y2.

Extra

Parameters

Extra parameters you want to send on the command-
line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Res

Multi

Set the output image pixel resolution regardless of
what is specified in the RIB.

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

82

Alias

This Module is designed to control the Alias Studio commandline renderers. This is a V;

General Information

Default ID 374e7b28-645c-4385-a3Cb-c5fc7f45acll
Type Name and Shortcuts Alias Studio
Alias
Studio
Parameters
Name Type Get | Set Meaning Default
Product Choice X X | Which Alias renderer to use for the Job. Your choices | PowerTracer
are:
Renderer
RayTracer
PowerCaster
PowerTracer

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 83

Arnold for Maya

The Maya.sx compiled Module now includes the ability to set up customized products for different renderers accessible through the
Maya command line interface. Each Product is a section in the Maya.ini file which is in the Module folder. You can add your own or
customize the existing ones in a similar manner to how you create Virtual Modules.

The Arnold for Maya Product is designed to control the Arnold for Maya plugin for Maya. This product is included in the Compiled
Module Maya.sx. Using this product will override any Render Layer renderer settings in your Maya file.

General Information

Default ID 833clfa9-fcOb-46da-920a-c4b74b92d5¢cl
Type Name and Shortcuts Arnold for Maya
adm
arnold4m
Parameters
Name Type Get | Set Meaning Default
Extra Parameters X X | Extra parameters you want to send on the command-

line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™ 84

Name Type Get | Set Meaning Default

mr Verbosity Choice X X | This controls the amount of verbosity of the mental
ray renderer (if it is being used by the scene file). You
can choose from:
" - Use default verbosity
"o" - No messages
" - Fatal Errors Only
"3 - Errors and Warnings Only
"s" - Progress (including image filenames)
Note you must use the highest verbosity for Smedge
to detect the image filenames, but this can slow down
renders that have a lot of output

Project Dir X X | The Maya project to use for rendering. If left blank,
no project will be passed to the renderer.

RenderDir Dir X X | Override the output folder

RenumberBy Text X X | The increment value for renumbering the frame files.
Blank defaults to 1

RenumberStart Text X X | The Job can be renumbered starting at this value. If
left blank, the file frame numbers will correspond to
the frames rendered

SequenceBy Text X X | Allows you to change the number of frames rendered

in a sequence, using the -b flag. Make sure that your
PacketSize is set to a whole number multiple of this
value. If blank, defaults to 1

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

85

Arnold for Maya (Single Frame)

The Maya.sx compiled Module now includes the ability to set up customized products for different renderers accessible through the
Maya command line interface. Each Product is a section in the Maya.ini file which is in the Module folder. You can add your own or
customize the existing ones in a similar manner to how you create Virtual Modules.

The Arnold for Maya (Single Frame) Product is designed to control the Arnold for Maya plug in for Maya. This product is included
in the Compiled Module Maya.sx. Using this product will override any Render Layer renderer settings in your Maya file.

adds the SingleFrame option in the product definition in order to provide the attributes used for splitting single frames

General Information

Default ID lac408ad-ef9f-438£f-94b3-55ffb719%albl
Type Name and Shortcuts Arnold for Maya Single Image

adm-1

arnold4m-1

Parameters
Name Dpe Get | Set Meaning Default
CompositeCommand | Text X X | This is the command that can be used to re-assemble

the slices. No default is provided because Maya does
not include a system that can composite every pos-
sible type of image that it can create. You can supply
your own command, using job variable substitution to
find and place the slices. If this is blank when the
stitch work is ready to be sent, no automated compos-
ition of the image slices is done.

Extra Parameters X X | Extra parameters you want to send on the command-
line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 86

Name Type Get | Set Meaning Default

Project Dir X X | The Maya project to use for rendering. If left blank,
no project will be passed to the renderer.

RegionEnd Multi: X The top, right corner of the current slice in pixels

X
Y
RegionEndPercent Multi X The top, right corner of the current slice as a percent-
X age (floating point between 0 and 1).
Y Note: This value is currently only correctly calculated
if the RenderRegion is the entire image size.

RegionName Text X X | The naming convention for each slice. You can refer- | Slice
ence other parameters in this text, and they will be | $(RegionStart.X)-
properly expanded at render time. $(RegionStart.Y)

RegionSize Multi X The size of the current slice, in pixels.

X
Y
RegionSizePercent Multi X The size of the current slice, in pixels.
X
Y
RegionStart Multi: X The bottom, left corner of the current slice in pixels
X
Y
RegionStartPercent Multi: X The bottom, left corner of the current slice as a per-
X centage (floating point between 0 and 1).
Y Note: This value is currently only correctly calculated
if the RenderRegion is the entire image size.

RenderDir Dir X X | Override the output folder

RenderRegion Multi: X X | This is the total sub-region of the full image size that

oLeft will be divided up to other machines. To render the
*Right full image size, use 0 for Left and Bottom, and the
*Bottom image width and height for Right and Top, respect-
*Top ively.

Fields: Left, Right, Bottom, Top

Separator: " "

SliceImage Multi: X X | The number of sections, horizontally and vertically, to

*Horizontal divide the image into.
*Vertical

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

87

Name Type Get | Set Meaning Default
SequenceBy Text X X | Allows you to change the number of frames rendered
in a sequence, using the -b flag. Make sure that your
PacketSize is set to a whole number multiple of this
value. If blank, defaults to 1
SliceOverlap Int X X | The number of pixels of overlap between the slices. | 50
Useful for reducing edge artifacts on the slices.
Slices Text X The total number of slices from the image that will be

rendered. Equal to:
$(Slicelmage.Horizontal) x $(Slicelmage.Vertical)

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

88

Blender

General Information

e. It includes all of the parameters from

Default ID 75316b6c-2510-44f1-b15d-d6a8f23a4c3f
Type Name and Shortcuts Blender
Parameters
Name Type Get | Set Meaning Default
Extra Parameters X X | Extra parameters you want to send on the command-

line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

89

Cinema 4D

General Information

Default ID 986184cd-04cl1-451f-af66-£2947e405434
Type Name and Shortcuts Cinema 4D
Cc4d
Parameters
Name Type Get | Set Meaning Default
Extra Parameters X X | Extra parameters you want to send on the command-

line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

90

Combustion 4

General Information

Default ID 0dcfcl81-7272-4d27-8042-cf208b8£f05b5
Type Name and Shortcuts Combustion 4
c4
Combustion
Parameters
Name Type Get | Set Meaning Default
Extra Parameters X X | Extra parameters you want to send on the command-

line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

RenumberBy Text X X | The increment value for renumbering the frame files.
If blank, defaults to 1

SequenceBy Text X X | Allows you to change the number of frames rendered
in a sequence, using the

-b flag. Make sure that your PacketSize is set to a
whole number multiple of this value. If blank, de-
faults to 1

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 9]

Digital Fusion

General Information

Default ID aefec858-eebl-4e67-8b75-d147e0b60alb
Type Name and Shortcuts Digital Fusion
Fusion
DF
Parameters
Name Type Get | Set Meaning Default
rtPath File X X | The name (and optionally the path to) the dfscript that | Rendertool
actually controls the rendering.
dfPath File X X | You can supply the full path to the Digital Fusion ex-

ecutable to the script. If you leave this blank, the de-
fault supplied script will check the environment vari-
able FUSION LOCATION, then the start directory
for a copy of Digital Fusion or the Render Node.

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

92

finalRender for Maya

The Maya.sx compiled Module now includes the ability to set up customized products for different renderers accessible through the
Maya command line interface. Each Product is a section in the Maya.ini file which is in the Module folder. You can add your own or
customize the existing ones in a similar manner to how you create Virtual Modules.

The finalRender for Maya Product allows you to tell Maya to render using the Maya Vector renderer. This will override any Render

Layer renderer settings in your Maya 7 file.

General Information

Default ID a%bdf783-810b-46ce-885e-90d37f2e4128
Type Name and Shortcuts finalRender for Maya
fridm
fr
Parameters
Name Type Get | Set Meaning Default

Extra Parameters X X | Extra parameters you want to send on the command-
line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Project Dir X X | The Maya project to use for rendering. If left blank,
no project will be passed to the renderer.

RenderDir Dir X X | Override the output folder

RenumberBy Text X X | The increment value for renumbering the frame files.
Blank defaults to 1

RenumberStart Text X X | The Job can be renumbered starting at this value. If
left blank, the file frame numbers will correspond to
the frames rendered

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

93

Name

Type

Get

Set

Meaning

Default

SequenceBy

Text

Allows you to change the number of frames rendered
in a sequence, using the -b flag. Make sure that your
PacketSize is set to a whole number multiple of this
value. If blank, defaults to 1

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

94

FFmpeg

General Information

Default ID 5fe84bal-cbbf-49fd-a244-2732bfbdfb71
Type Name and Shortcuts FFmpeg
Parameters
Name Type Get | Set Meaning Default

GlobalOptions Parameters X X Extra parameters you want to send on the command
line, which apply to the global settings of FFmpeg.

InfileOptions Parameters X X Extra parameters you want to send on the command
line, which apply to the input file settings of FFmpeg.

OutfileOptions Parameters X X Extra parameters you want to send on the command
line,which apply to the output file settings of FFmpeg.

OutputFile File X X | Specifies the full path and format string or file name
used for the output file passed into Ffmpeg.

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

95

Fryrender

This Module is designed to control the Fryrender command line renderer. This is a Compiled Module. It includes all of the parameters

Fryrender/dsimerge or Frycmd

The Fry.sx Module can handle the command line operation for both Fryrender using dsimerge to merge the DSI files together (version
1.0), and for Fryemd, which can also be used to merge DSI files (version 1.5). If you set the command line to the Fryrender execut-
able, the command line will automatically be created with the extra flags required, and DSI merging will use the dsimerge command.
If you set it to the Frycmd executable, that executable will be used for both the rendering and merging DSI files.

General Information

Default ID 26BD6DFF-1F01-4CD3-A326-94722F132039
Type Name and Shortcuts Fryrender
Fry
Parameters
Name Tpe Get | Set Meaning Default

Extra Parameters X X | Extra parameters you want to send on the command-
line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

ImageQOutput File X X | Specifies the full path and name of the image file. The
file name can refer to any of the multiple graphic
formats supported.

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

96

Gelato

General Information

Default ID 0e304886-b40b-4471-8e08-3f431442c3el
Type Name and Shortcuts Gelato
Parameters
Name Type Get | Set Meaning Default
Extra Parameters X X Extra parameters you want to send on the command

line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

97

Generic Script

This Module is designed to allow the distribution of any command line. You can use it to distribute a range based sequence, such as a

rendered animation sequence, or you can use it to distribute a command to execute exactly one time on every Engine that is a member

of the assigned Pool. If you supply a Range value, the Master will use that range to break up the distribution just like every other
range based Product. However, if you leave the Range blank, the work will be evenly distributed to every Engine in the pool. When

you submit a Generic Script Job with Submit, you will still need to supply a —Range flag to the Submit command line, but you can
leave its value blank. This is different than other Products.

General Information

Default ID 2c0ad30d-5432-44£3-8ab9-5d09d08e2955
Type Name and Shortcuts Generic Script
Generic
Script
Parameters
Name Type Meaning Default
Command Text

X X | The command line to execute. The Engine will per-
form standard Smedge style variable substitution be-
fore launching the command. You can access other
Job parameters using the $(Name) syntax.

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

98

Houdini

General Information

e. It includes all of the parameters

Default ID 044daB801-d94b-41bd-9861-ec429cTeebe4
Type Name and Shortcuts Houdini
Mantra
Parameters
Name Type Get | Set Meaning Default

Extra Parameters X X Extra parameters you want to send on the command-
line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

PythonFilter File X X This is the path to a Python script file that is used to
do filtering of the Houdini IFD Files before rendering.

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

99

imgcvt

This Module allows you to control the imgcvt image conversion program that is included with Maya. It is supplied by the Maya.sx

ule is hard coded in the Maya module code, and is not configured by the Maya.ini file.

When using the GUI, if you select an existing frame file for the InSequence or OutSequence parameters, it will automatically convert
that image to a format specifier.

General Information

fdae3386-7a20-460d-9795-aladf0£8a841

Default ID
Type Name and Shortcuts imgcvt
Parameters
Name Bpe Get | Set Meaning Default
InSequence File X X The input sequence
Options Text X X | Additional command line options
OutSequence File X X The output sequence

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

100

Indigo

This Module is designed to control the Indigo command line renderer. This is a Compiled Module. It includes all of the parameters

General Information

Default ID 2602738b-7176-4d8d-aa5c-34acldce620d
Type Name and Shortcuts Indigo
Parameters
Name Type Get | Set Meaning Default
ImageQOutput File X X | Specifies the full path and name of the image file. The
file name can refer to any of the multiple graphic
formats supported.
Settings Parameters X X | Extra parameters you want to send on the command-

line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

101

Large File Transfer

This Module allows you to queue file operations in order to reduce your network load. File operations are queued separate from other
Smedge workers, but can still be limited in the number of simultaneous operations allowed. This is a Compiled Module. It includes all

General Information

Default ID 3e732d37-a865-45£3-b2b2-3624db07ce2d

Type Name and Shortcuts Large File Transfer
1ft
copy
move

Parameters
Name Type Get | Set Meaning Default
Operation Choice X X The type of operation to perform. Choices are: 1

0 = Move/Rename a file
1 = Copy afile

Overwrite Bool X X | Allow the target file to be overwritten if it exists Yes
Source File X X The source file
Target File X X The target file

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 102

Lightwave

This Module is designed to control the Lightwave command line renderer. This is a Compiled Module. It includes all of the parameters

This Module supports the creation of Dynamic Products with a simple INI file format. See the Dynamic Products chapter for more in-

formation.

General Information

Default ID 0c09288e-7241-439c-af2b-b9954c6lfbed
Type Name and Shortcuts Lightwave
LW
LWSN
Parameters
Name Type Get | Set Meaning Default
ConfigFile Dir X X | The full path to the Lightwave config files to use for
rendering.
ContentDir Dir X X | The path to the content directory to use for rendering.
SequenceBy Text X X | Allows you to change the number of frames rendered
in a sequence. Make sure that your PacketSize is set
to a whole number multiple of this value. If blank, de-
faults to 1

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

103

MachStudioPro 1.4

General Information

Default ID

d8bl29%ac-ad4e2-41b6-a504-474df4349cf7

Type Name and Shortcuts

MachStudioPro Render 1.4

Parameters

Name

Type

Get

Set

Meaning

Default

Extra

Parameters

Extra parameters you want to send on the command-
line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Show

Choice

Select show to display a preview of the hardware buf-
fer output during rendering. The choices are:

/noshow: Do not show output

/show: Show output

/moshow

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

104

Maxwell Light Simulator

This Module is designed to control the Maxwell Light Simulator command line renderer. This is a Compiled Module. It includes all of

Maxwell Versions

The command line syntax and functionality of the rendering has changed significantly in various versions of Maxwell. Smedge cur-
rently supports the syntax for Maxwell 2.0 and later.

General Information

Default ID 644d0701-8027-48e0-8bf8-ea8851a519f2

Type Name and Shortcuts Maxwell Light Simulator
Maxwell
mx
mxcl

Parameters
Name Type Get | Set Meaning Default
Display Choice X X | Select the options for displaying the Maxwell pro- | 0

gram while a render is running. (Note that you cannot
display an interface when SmedgeEngine is running
as a background Service).

0: Node license (always hidden)

1: Hidden (uses GUI license)

2: Console View (uses GUI license)

2: Full GUI display (uses GUI license)

Smedge 2014 Update 1 Administrator Manual © 2004 - 2013 Uberware™ 105

Name

Type

Get

Set

Meaning

Default

Extra

Parameters

Extra parameters you want to send on the command
line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Note that there are some extra parameters that are
only allowed for Maxwell 2.0+. Smedge does not
verify that you have specified flags in this parameter
that are allowed for the command format you are us-
ing. Be sure to check that you are not using flags that
are not allowed, or you will have work units that fail.

ImageOutput

File

Specifies the full path and name of the image file. The
file name can refer to any of the multiple graphic
formats supported. In case of sequences, the output
files will be numbered with a 4-digit suffix.

Verbose

Choice

Sets the verbosity level from the renderer. One of:
0: None

1 Errors

2: Warnings
3: Info

4: All

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

106

Maya

The Maya.sx compiled Module now includes the ability to set up customized products for different renderers accessible through the
Maya command line interface. Each Product is a section in the Maya.ini file which is in the Module folder. You can add your own or
customize the existing ones in a similar manner to how you create Virtual Modules.

The default Maya product is designed for use with Maya 7.0 and later. It can handle the extended Render Layers feature new in Maya
7, which allows you to assign different renderers for each layer. The downside of this new system is that you have less control of the
render settings via the Extra Parameters you can supply to the command line. If you are using Maya 6, or if you want more command

line controls, you can use the Maya Software Product.

General Information

Default ID 56f3b0da-a949-4c76-a2le-5bff03aca8af
Type Name and Shortcuts Maya
file
Parameters
Name Type Get | Set Meaning Default
Extra Parameters X X | Extra parameters you want to send on the command-

line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

107

Name Type Get | Set Meaning Default

mr Verbosity Choice X X | This controls the amount of verbosity of the mental
ray renderer (if it is being used by the scene file). You
can choose from:
" - Use default verbosity
"o" - No messages
" - Fatal Errors Only
"3 - Errors and Warnings Only
"s" - Progress (including image filenames)
Note you must use the highest verbosity for Smedge
to detect the image filenames, but this can slow down
renders that have a lot of output

Project Dir X X | The Maya project to use for rendering. If left blank,
no project will be passed to the renderer.

RenderDir Dir X X | Override the output folder

RenumberBy Text X X | The increment value for renumbering the frame files.
Blank defaults to 1

RenumberStart Text X X | The Job can be renumbered starting at this value. If
left blank, the file frame numbers will correspond to
the frames rendered

SequenceBy Text X X | Allows you to change the number of frames rendered

in a sequence, using the -b flag. Make sure that your
PacketSize is set to a whole number multiple of this
value. If blank, defaults to 1

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

108

Maya (1-5)

The Maya.sx compiled Module now includes the ability to set up customized products for different renderers accessible through the Maya
command line interface. Each Product is a section in the Maya.ini file which is in the Module folder. You can add your own or customize
the existing ones in a similar manner to how you create Virtual Modules.

The Maya (1-5) Product allows you to control older versions of Maya using the old command line syntax.

The Maya (1-5) Product includes all of the parameters from Job, ProcessJob, SequenceDistributor, and RenderJob.

General Information

Default ID 8£6790cl-7ea9-4091-82b9%-e7c64327a632
Type Name and Shortcuts Maya (1-5)
Mayal
MayaZz
Maya3
Maya4
Mayab
Parameters
Name Type Get | Set Meaning Default
Extra Parameters X X | Extra parameters you want to send on the command-
line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)
Project Dir X X | The Maya project to use for rendering. If left blank,
no project will be passed to the renderer.
RenderDir Dir X X | Override the output folder
RenumberBy Text X X | The increment value for renumbering the frame files.
Blank defaults to 1

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

109

Name Type Get | Set Meaning Default
RenumberStart Text X X | The Job can be renumbered starting at this value. If
left blank, the file frame numbers will correspond to
the frames rendered
SequenceBy Text X X | Allows you to change the number of frames rendered

in a sequence, using the -b flag. Make sure that your
PacketSize is set to a whole number multiple of this

value. If blank, defaults to 1

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

110

Maya Hardware Renderer

The Maya.sx compiled Module now includes the ability to set up customized products for different renderers accessible through the
Maya command line interface. Each Product is a section in the Maya.ini file which is in the Module folder. You can add your own or
customize the existing ones in a similar manner to how you create Virtual Modules.

The Maya Hardware Product allows you to tell Maya to render using the Maya Hardware renderer. Note that hardware rendering is
actually dependent upon the hardware installed on your Engines. Using this product will override any Render Layer renderer settings

in your Maya 7 file.

General Information

Default ID bbf04770-cb4b-40b7-8d2d-ebee88c3a767
Type Name and Shortcuts Maya Hardware Renderer
Maya Hardware
hw
Parameters
Name Dpe Get | Set Meaning Default

Extra Parameters X X | Extra parameters you want to send on the command-
line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Project Dir X X | The Maya project to use for rendering. If left blank,
no project will be passed to the renderer.

RenderDir Dir X X | Override the output folder

RenumberBy Text X X | The increment value for renumbering the frame files.
Blank defaults to 1

RenumberStart Text X X | The Job can be renumbered starting at this value. If
left blank, the file frame numbers will correspond to
the frames rendered

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

111

Name

Type

Get

Set

Meaning

Default

SequenceBy

Text

Allows you to change the number of frames rendered
in a sequence, using the -b flag. Make sure that your
PacketSize is set to a whole number multiple of this
value. If blank, defaults to 1

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

112

Maya Lightmap Generator

The Maya.sx compiled Module now includes the ability to set up customized products for different renderers accessible through the
Maya command line interface. Each Product is a section in the Maya.ini file which is in the Module folder. You can add your own or
customize the existing ones in a similar manner to how you create Virtual Modules.

The Maya Lightmap Generator Product allows you to tell Maya to render using the metnal ray lightmap renderer. Using this product
will override any Render Layer renderer settings in your Maya 7 file.

Maya lightmap renderer does not support overriding the frame range to render. You can only send this type of Job as a single whole

work unit for the entire scene.

General Information

Default ID cb4dcb75-6330-47df-af47-cae6fe573389
Type Name and Shortcuts Maya Lightmap Generator
Lightmap
Im
Parameters
Name Type Get | Set Meaning Default
Extra Parameters X X | Extra parameters you want to send on the command-
line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)
Project Dir X X | The Maya project to use for rendering. If left blank,
no project will be passed to the renderer.
RenderDir Dir X X | Override the output folder

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

113

Maya Software Renderer

The Maya.sx compiled Module now includes the ability to set up customized products for different renderers accessible through the
Maya command line interface. Each Product is a section in the Maya.ini file which is in the Module folder. You can add your own or
customize the existing ones in a similar manner to how you create Virtual Modules.

The Maya Software product is what used to be the normal Maya Product in Smedge 3 version 1.0.x. It actually forces the Maya com-
mand line to use the Maya Software renderer. If you are using Maya 6, you will need to use this Product if you want to render with the
Maya software renderer, because the Maya product uses a render product switch that is not available in Maya 6. You can also use this
product with Maya 7 or later if you want to force Maya to use the Maya Software renderer, or if you want the extended command line
control over the render quality that you can get with the specific render products.

General Information

Default ID 44d7eel7-ffe5-4f45-abel0-8acedla7fae’
Type Name and Shortcuts Maya Software Renderer
Maya Software
sw
Parameters
Name Type Get | Set Meaning Default
Extra Parameters X X | Extra parameters you want to send on the command-
line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)
Project Dir X X | The Maya project to use for rendering. If left blank,
no project will be passed to the renderer.
RenderDir Dir X X | Override the output folder
RenumberBy Text X X | The increment value for renumbering the frame files.
Blank defaults to 1

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

114

Name Type Get | Set Meaning Default
RenumberStart Text X X | The Job can be renumbered starting at this value. If
left blank, the file frame numbers will correspond to
the frames rendered
SequenceBy Text X X | Allows you to change the number of frames rendered

in a sequence, using the -b flag. Make sure that your
PacketSize is set to a whole number multiple of this

value. If blank, defaults to 1

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

115

Maya Software Renderer (Single Frame)

The Maya.sx compiled Module now includes the ability to set up customized products for different renderers accessible through the
Maya command line interface. Each Product is a section in the Maya.ini file which is in the Module folder. You can add your own or
customize the existing ones in a similar manner to how you create Virtual Modules.

The Maya Software Renderer (Single Frame) product is what used to be the normal Maya Product in Smedge 3 version 1.0.x. It ac-
tually forces the Maya command line to use the Maya Software renderer. If you are using Maya 6, you will need to use this Product if
you want to render with the Maya software renderer, because the Maya product uses a render product switch that is not available in
Maya 6. You can also use this product with Maya 7 or later if you want to force Maya to use the Maya Software renderer, or if you
want the extended command line control over the render quality that you can get with the specific render products.

General Information

Default ID 2B2C5C75-6AA8-457f-B72D-3CAE698C7772
Type Name and Shortcuts sw-1

Maya Software Renderer Single Image
Maya Software Single Image

Maya Software Single

Parameters
Name Tpe Get | Set Meaning Default
CompositeCommand | Text X X | This is the command that can be used to re-assemble

the slices. No default is provided because Maya does
not include a system that can composite every pos-
sible type of image that it can create. You can supply
your own command, using job variable substitution to
find and place the slices. If this is blank when the
stitch work is ready to be sent, no automated compos-
ition of the image slices is done.

Smedge 2014 Update 1 Administrator Manual ©2004 - 2013 Uberware™ 116

Name Type Get | Set Meaning Default

Extra Parameters X X | Extra parameters you want to send on the command
line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)

Project Dir X X | The Maya project to use for rendering. If left blank,
no project will be passed to the renderer.

RegionEnd Multi X The top, right corner of the current slice in pixels

X
Y
RegionEndPercent Multi X The top, right corner of the current slice as a percent-
X age (floating point between 0 and 1).
Y Note: This value is currently only correctly calculated
if the RenderRegion is the entire image size.

RegionName Text X X | The naming convention for each slice. You can refer- | Slice
ence other parameters in this text, and they will be | $(RegionStart.X)-
properly expanded at render time. $(RegionStart.Y)

RegionSize Multi: X The size of the current slice, in pixels.

X
Y
RegionSizePercent Multi: X The size of the current slice, in pixels.
X
Y
RegionStart Multi: X The bottom, left corner of the current slice in pixels
X
Y
RegionStartPercent Multi: X The bottom, left corner of the current slice as a per-
X centage (floating point between 0 and 1).
Y Note: This value is currently only correctly calculated
if the RenderRegion is the entire image size.
RenderDir Dir X X | Override the output folder

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

117

Name Type Get | Set Meaning Default
RenderRegion Multi: X X | This is the total sub-region of the full image size that
oLeft will be divided up to other machines. To render the
*Right full image size, use 0 for Left and Bottom, and the
*Bottom image width and height for Right and Top, respect-
*Top ively.
Fields: Left, Right, Bottom, Top
Separator: " "
SliceImage Multi: X X | The number of sections, horizontally and vertically, to
*Horizontal divide the image into.
*Vertical
SequenceBy Text X X | Allows you to change the number of frames rendered
in a sequence, using the -b flag. Make sure that your
PacketSize is set to a whole number multiple of this
value. If blank, defaults to 1
SliceOverlap Int X X | The number of pixels of overlap between the slices. | 50
Useful for reducing edge artifacts on the slices.
Slices Text X The total number of slices from the image that will be

rendered. Equal to:
$(Slicelmage.Horizontal) x $(Slicelmage. Vertical)

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

118

Maya to mental ray Exporter

The Maya.sx compiled Module now includes the ability to set up customized products for different renderers accessible through the
Maya command line interface. Each Product is a section in the Maya.ini file which is in the Module folder. You can add your own or
customize the existing ones in a similar manner to how you create Virtual Modules.

The Maya to mental ray Exporter Product allows you to tell Maya to convert the Maya scene to .mi files for use with the mental ray
standalone renderer.

General Information

Default ID 17¢64628-b48c-4464-86d6-3£3389758db9
Type Name and Shortcuts Maya to mental ray Exporter
MentalRay Exporter
exporter
mi
Parameters
Name Type Get | Set Meaning Default
Extra Parameters X X | Extra parameters you want to send on the command-
line. Note: In order to be sure that the parameters are
passed properly, enclose this entire list of parameters
in quote marks. If you have only 1 parameter, you still
need to enclose it in quote marks, and include a space
somewhere in the string. (See bug database for more
information.)
Project Dir X X | The Maya project to use for rendering. If left blank,
no project will be passed to the renderer.
RenderDir Dir X X | Override the output folder
RenumberBy Text X X | The increment value for renumbering the frame files.
Blank defaults to 1
RenumberStart Text X X | The Job can be renumbered starting at this value. If
left blank, the file frame numbers will correspond to
the frames rendered

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

119

Name

Type

Get

Set

Meaning

Default

SequenceBy

Text

Allows you to change the number of frames rendered
in a sequence, using the -b flag. Make sure that your
PacketSize is set to a whole number multiple of this
value. If blank, defaults to 1

Smedge 2014 Update 1 Administrator Manual

© 2004 - 2013 Uberware™

120

Maya Vector Renderer

The Maya.sx compiled Module now includes the ability to set up customized products for different renderers accessible through the
Maya command line interface. Each Product is a section in the Maya.ini file which is in the Module folder. You can add your own or
customize the existing ones in a similar manner to how you create Virtual Modules.

The Maya Vector Renderer Product allows you to tell Maya to render using the Maya Vector renderer